This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), Braunschweig Integrated Centre for Systems biology (BRICS), Centre for Structural Systems Biology (CSSB) the Study Centre Hannover, Hannover/Germany and the Centre for Individualised Infection Medicine (CiiM).

 

  • MAIT cells are enriched and highly functional in ascites of patients with decompensated liver cirrhosis.

    Niehaus, Christian E; Strunz, Benedikt; Cornillet, Martin; Falk, Christine S; Schnieders, Ansgar; Maasoumy, Benjamin; Hardtke, Svenja; Manns, Michael P; Rm Kraft, Anke; Björkström, Niklas K; et al. (Wiley Online Open, 2020-02-03)
    Patients with advanced liver cirrhosis have an increased susceptibility to infections. As part of the cirrhosis-associated immune dysfunction, mucosal associated invariant T (MAIT) cells, that have the capacity to respond towards bacteria, are severely diminished in circulation and liver tissue. However, MAIT cell presence and function in the peritoneal cavity, a common anatomical site for infections in cirrhosis, remain elusive. To study this, matched peripheral blood and ascites fluid were collected from 35 patients with decompensated cirrhosis, with or without spontaneous bacterial peritonitis (SBP). MAIT cell phenotype and function were analyzed using high-dimensional flow cytometry and obtained data was compared to blood samples of healthy controls (n=24) and patients with compensated cirrhosis (n=11). We found circulating MAIT cells to be severely decreased in cirrhotic patients as compared to controls. In contrast, in ascites fluid, MAIT cells were significantly increased together with CD14+ CD16+ monocytes, ILCs, and NK cells. This was paralleled by elevated levels of several pro-inflammatory cytokines and chemokines in ascites fluid as compared to plasma. Peritoneal MAIT cells displayed an activated tissue-resident phenotype and this was corroborated by increased functional responses following stimulation with E. coli or lL-12 + IL-18 as compared to circulating MAIT cells. During SBP, peritoneal MAIT cell frequencies increased most among all major immune cell subsets, suggestive of active homing of MAIT cells to the site of infection. CONCLUSIONS: Despite severely diminished MAIT cell numbers and impaired phenotype in circulation, peritoneal MAIT cells remain abundant, activated, and highly functional in decompensated cirrhosis and are further enriched in SBP. This suggests that peritoneal MAIT cells could be of interest for immune intervention strategies in patients with decompensated liver cirrhosis and SBP.
  • IL-7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival.

    Knop, Laura; Deiser, Katrin; Bank, Ute; Witte, Amelie; Mohr, Juliane; Philipsen, Lars; Fehling, Hans J; Müller, Andreas J; Kalinke, Ulrich; Schüler, Thomas; et al. (Wiley Online Open, 2020-02-11)
    The survival of peripheral T cells is dependent on their access to peripheral lymph nodes (pLNs) and stimulation by Interleukin-7 (IL-7). In pLNs fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) produce IL-7 suggesting their contribution to the IL-7-dependent survival of T cells. However, IL-7 production is detectable in multiple organs and is not restricted to pLNs. This raises the question whether pLN-derived IL-7 is required for the maintenance of peripheral T cell homeostasis. Here, we show that numbers of naive T cells (TN ) remain unaffected in pLNs and spleen of mice lacking Il7 gene activity in pLN FRCs, LECs or both. In contrast, frequencies of central memory T cells (TCM ) are reduced in FRC-specific IL-7 knockout mice. Thus, steady state IL-7 production by pLN FRCs is critical for the maintenance of TCM , but not TN , indicating that both T cell subsets colonize different ecological niches in vivo. This article is protected by copyright. All rights reserved.
  • Selective reconstitution of IFN‑γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection.

    Borst, Katharina; Flindt, Sven; Blank, Patrick; Larsen, Pia-Katharina; Chhatbar, Chintan; Skerra, Jennifer; Spanier, Julia; Hirche, Christoph; König, Martin; Alanentalo, Tomas; et al. (PLOS, 2020-02-01)
    IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity.
  • A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes.

    Kollmus, Heike; Fuchs, Helmut; Lengger, Christoph; Haselimashhadi, Hamed; Bogue, Molly A; Östereicher, Manuela A; Horsch, Marion; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Amarie, Oana Veronica; et al. (Springer, 2020-02-14)
    Myxococcus xanthus DK1622 is known as a proficient producer of different kinds of secondary metabolites (SM) with various biological activities, including myxovirescin A, myxalamide A, myxochromide A and DKxanthene. Low production of SM in the wild type bacteria makes searching for production optimization methods highly desirable. Identification and induction of endogenous key molecular feature(s) regulating the production level of the metabolites remain promising, while heterologous expression of the biosynthetic genes is not always efficient because of various complicating factors including codon usage bias. This study established proteomic and molecular approaches to elucidate the regulatory roles of the ROK regulatory protein in the modification of secondary metabolite biosynthesis. Interestingly, the results revealed that rok inactivation significantly reduced the production of the SM and also changed the motility in the bacteria. Electrophoretic mobility shift assay using purified ROK protein indicated a direct enhancement of the promoters encoding transcription of the DKxanthene, myxochelin A, and myxalamide A biosynthesis machinery. Comparative proteomic analysis by two-dimensional fluorescence difference in-gel electrophoresis (2D-DIGE) was employed to identify the protein profiles of the wild type and rok mutant strains during early and late logarithmic growth phases of the bacterial culture. Resulting data demonstrated overall 130 differently altered proteins by the effect of the rok gene mutation, including putative proteins suspected to be involved in transcriptional regulation, carbohydrate metabolism, development, spore formation, and motility. Except for a slight induction seen in the production of myxovirescin A in a rok over-expression background, no changes were found in the formation of the other SM. From the outcome of our investigation, it is possible to conclude that ROK acts as a pleiotropic regulator of secondary metabolite formation and development in M. xanthus, while its direct effects still remain speculative. More experiments are required to elucidate in detail the variable regulation effects of the protein and to explore applicable approaches for generating valuable SM in this bacterium.
  • Eleven grand challenges in single-cell data science.

    Lähnemann, David; Köster, Johannes; Szczurek, Ewa; McCarthy, Davis J; Hicks, Stephanie C; Robinson, Mark D; Vallejos, Catalina A; Campbell, Kieran R; Beerenwinkel, Niko; Mahfouz, Ahmed; et al. (BMC, 2020-02-07)
    The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.

View more