This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), Würzburg/Germany, Braunschweig Integrated Centre for Systems biology (BRICS), Centre for Structural Systems Biology (CSSB) the Study Centre Hannover, Hannover/Germany and the Centre for Individualised Infection Medicine (CiiM).

 

  • Selective Host Cell Death by Staphylococcus aureus : A Strategy for Bacterial Persistence.

    Missiakas, Dominique; Winstel, Volker; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2021-01-21)
    Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
  • Natural products in drug discovery: advances and opportunities.

    Atanasov, Atanas G; Zotchev, Sergey B; Dirsch, Verena M; Supuran, Claudiu T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2021-01-28)
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
  • Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs.

    Démoulins, Thomas; Ruggli, Nicolas; Gerber, Markus; Thomann-Harwood, Lisa J; Ebensen, Thomas; Schulze, Kai; Guzmán, Carlos A; McCullough, Kenneth C; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-01-28)
    Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.
  • Resolving trained immunity with systems biology.

    Koeken, Valerie A C M; van Crevel, Reinout; Netea, Mihai G; Li, Yang; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Wiley-VCH, 2021-02-11)
    Trained immunity is characterized by long-term functional reprogramming of innate immune cells following challenge with pathogens or microbial ligands during infection or vaccination. This cellular reprogramming leads to increased responsiveness upon re-stimulation, and is mediated through epigenetic and metabolic modifications. In this review, we describe how molecular mechanisms underlying trained immunity, for example induced by β-glucan or Bacille Calmette-Guérin (BCG) vaccination, can be investigated by using and integrating different layers of information, including genome, epigenome, transcriptome, proteome, metabolome, microbiome, immune cell phenotyping and function. We also describe the most commonly used experimental and computational techniques. Finally, we provide a number of examples of how a systems biology approach was applied to study trained immunity to understand inter-individual variation or the complex interplay between molecular layers. In conclusion, trained immunity represents an opportunity for regulating innate immune function, and understanding the complex interplay of mechanisms that mediate trained immunity might enable us to employ it as a clinical tool in the future. This article is protected by copyright. All rights reserved.
  • EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients.

    Cornberg, Markus; Buti, Maria; Eberhardt, Christiane S; Grossi, Paolo Antonio; Shouval, Daniel; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Elsevier, 2021-02-06)
    According to a recent World Health Organization estimate, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, which originated in China in 2019, has spread globally, infecting nearly 100 million people worldwide by January 2021. Patients with chronic liver diseases (CLD), particularly cirrhosis, hepatobiliary malignancies, candidates for liver transplantation, and immunosuppressed individuals after liver transplantation appear to be at increased risk of infections in general, which in turn translates into increased mortality. This is also the case for SARS-CoV-2 infection, where patients with cirrhosis, in particular, are at high risk of a severe COVID-19 course. Therefore, vaccination against various pathogens including SARS-CoV-2, administered as early as possible in patients with CLD, is an important protective measure. However, due to impaired immune responses in these patients, the immediate and long-term protective response through immunisation may be incomplete. The current SARS-CoV-2 pandemic has led to the exceptionally fast development of several vaccine candidates. A small number of these SARS-CoV-2 vaccine candidates have already undergone phase III, placebo-controlled, clinical trials in healthy individuals with proof of short-term safety, immunogenicity and efficacy. However, although regulatory agencies in the US and Europe have already approved some of these vaccines for clinical use, information on immunogenicity, duration of protection and long-term safety in patients with CLD, cirrhosis, hepatobiliary cancer and liver transplant recipients has yet to be generated. This review summarises the data on vaccine safety, immunogenicity, and efficacy in this patient population in general and discusses the implications of this knowledge on the introduction of the new SARS-CoV-2 vaccines.

View more