This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), Braunschweig Integrated Centre for Systems biology (BRICS), Centre for Structural Systems Biology (CSSB) the Study Centre Hannover, Hannover/Germany and the Centre for Individualised Infection Medicine (CiiM).

 

  • Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs.

    Cornelius, Angela D A; Hosseini, Shirin; Schreier, Sarah; Fritzsch, David; Weichert, Loreen; Michaelsen-Preusse, Kristin; Fendt, Markus; Kröger, Andrea; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (BioMed Central, 2020-09-20)
    To compare the effect of low and high viral replication in the brain, wildtype and Irf-7-/- mice were infected with Langat virus (LGTV), which belongs to the TBEV-serogroup. The viral burden was analyzed in the olfactory bulb and the hippocampus. Open field, elevated plus maze, and Morris water maze experiments were performed to determine the impact on anxiety-like behavior, learning, and memory formation. Spine density of hippocampal neurons and activation of microglia and astrocytes were analyzed.
  • Molecular Phylogeny and Morphology of (=Lepteutypa ) (Amphisphaeriaceae).

    Samarakoon, Milan C; Maharachchikumbura, Sajeewa S N; Liu, Jian-Kui Jack; Hyde, Kevin D; Promputtha, Itthayakorn; Stadler, Marc; HZI, Helmholtz Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (MDPI, 2020-09-17)
    Amphisphaeriaceous taxa (fungi) are saprobes on decaying wood in terrestrial, mangrove, and freshwater habitats. The generic boundaries of the family have traditionally been based on morphology, and the delimitation of genera has always been challenging. Amphisphaeria species have clypeate ascomata and 1-septate ascospores and a coelomycetous asexual morph. Lepteutypa is different from Amphisphaeria in having eutypoid stromata and more than 1-septate ascospores. These main characters have been used for segregation of Lepteutypa from Amphisphaeria for a long time. However, the above characters are overlapping among Amphisphaeria and Lepteutypa species. Therefore, here we synonymized Lepteutypa under Amphisphaeria based on holomorphic morphology and multigene phylogeny. Further, our cluster analysis reveals the relationship between seven morphological traits among Amphisphaeria/Lepteutypa species and suggests those morphologies are not specific to either genus. Three new species (i.e., Amphisphaeria camelliae, A. curvaticonidia, and A. micheliae) are introduced based on morphology and LSU-ITS-RPB2-TUB2 phylogenies. Furthermore, the monotypic genus Trochilispora, which had been accepted in Amphisphaeriaceae, is revisited and synonymized under Hymenopleella and placed in Sporocadaceae.
  • Phylogenetic Assignment of the Fungicolous (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites.

    Becker, Kevin; Lambert, Christopher; Wieschhaus, Jörg; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-09-11)
    The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
  • Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin.

    Hennessen, Fabienne; Miethke, Marcus; Zaburannyi, Nestor; Loose, Maria; Lukežič, Tadeja; Bernecker, Steffen; Hüttel, Stephan; Jansen, Rolf; Schmiedel, Judith; Fritzenwanker, Moritz; et al. (MDPI, 2020-09-18)
    The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
  • Re-Evaluation of the Order Sordariales: Delimitation of Lasiosphaeriaceae s. str., and Introduction of the New Families Diplogelasinosporaceae, Naviculisporaceae, and Schizotheciaceae.

    Marin-Felix, Yasmina; Miller, Andrew N; Cano-Lira, José F; Guarro, Josep; García, D; Stadler, Marc; Huhndorf, Sabine M; Stchigel, Alberto M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-09-17)
    The order Sordariales includes the polyphyletic family Lasiosphaeriaceae, which comprises approximately 30 genera characterized by its paraphysate ascomata, asci with apical apparati, and mostly two-celled ascospores, which have a dark apical cell and a hyaline lower cell, frequently ornamented with mucilaginous appendages[...].

View more