This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), Braunschweig Integrated Centre for Systems biology (BRICS), Centre for Structural Systems Biology (CSSB) the Study Centre Hannover, Hannover/Germany and the Centre for Individualised Infection Medicine (CiiM).

 

  • Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors.

    Bastys, Tomas; Gapsys, Vytautas; Walter, Hauke; Heger, Eva; Doncheva, Nadezhda T; Kaiser, Rolf; de Groot, Bert L; Kalinina, Olga V; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (BMC, 2020-05-19)
    Background: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. Results: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. Conclusions: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.
  • Dual-Seq reveals genome and transcriptome of Caedibacter taeniospiralis, obligate endosymbiont of Paramecium.

    Pirritano, Marcello; Zaburannyi, Nestor; Grosser, Katrin; Gasparoni, Gilles; Müller, Rolf; Simon, Martin; Schrallhammer, Martina; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (NPG, 2020-06-16)
    Interest in host-symbiont interactions is continuously increasing, not only due to the growing recognition of the importance of microbiomes. Starting with the detection and description of novel symbionts, attention moves to the molecular consequences and innovations of symbioses. However, molecular analysis requires genomic data which is difficult to obtain from obligate intracellular and uncultivated bacteria. We report the identification of the Caedibacter genome, an obligate symbiont of the ciliate Paramecium. The infection does not only confer the host with the ability to kill other cells but also renders them immune against this effect. We obtained the C. taeniospiralis genome and transcriptome by dual-Seq of DNA and RNA from infected paramecia. Comparison of codon usage and expression level indicates that genes necessary for a specific trait of this symbiosis, i.e. the delivery of an unknown toxin, result from horizontal gene transfer hinting to the relevance of DNA transfer for acquiring new characters. Prediction of secreted proteins of Caedibacter as major agents of contact with the host implies, next to several toxin candidates, a rather uncharacterized secretome which appears to be highly adapted to this symbiosis. Our data provides new insights into the molecular establishment and evolution of this obligate symbiosis and for the pathway characterization of toxicity and immunity.
  • Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B.

    Krooss, Simon; Werwitzke, Sonja; Kopp, Johannes; Rovai, Alice; Varnholt, Dirk; Wachs, Amelie S; Goyenvalle, Aurelie; Aarstma-Rus, Annemieke; Ott, Michael; Tiede, Andreas; et al. (PLOS, 2020-04-08)
    Loss-of-function mutations in the human coagulation factor 9 (F9) gene lead to hemophilia B. Here, we dissected the consequences and the pathomechanism of a non-coding mutation (c.2545A>G) in the F9 3' untranslated region. Using wild type and mutant factor IX (FIX) minigenes we revealed that the mutation leads to reduced F9 mRNA and FIX protein levels and to lower coagulation activity of cell culture supernatants. The phenotype could not be compensated by increased transcription. The pathomechanism comprises the de novo creation of a binding site for the spliceosomal component U1snRNP, which is able to suppress the nearby F9 poly(A) site. This second, splicing-independent function of U1snRNP was discovered previously and blockade of U1snRNP restored mutant F9 mRNA expression. In addition, we explored the vice versa approach and masked the mutation by antisense oligonucleotides resulting in significantly increased F9 mRNA expression and coagulation activity. This treatment may transform the moderate/severe hemophilia B into a mild or subclinical form in the patients. This antisense based strategy is applicable to other mutations in untranslated regions creating deleterious binding sites for cellular proteins.
  • A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity.

    Smoczek, Margarethe; Vital, Marius; Wedekind, Dirk; Basic, Marijana; Zschemisch, Nils-Holger; Pieper, Dietmar H; Siebert, Anja; Bleich, Andre; Buettner, Manuela; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (NPG, 2020-04-09)
    Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.
  • Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads.

    Prezza, Gianluca; Heckel, Tobias; Dietrich, Sascha; Homberger, Christina; Westermann, Alexander J; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Cold Spring Harbor Laboratory Press, 2020-04-28)
    A major challenge for RNA-seq analysis of gene expression is to achieve sufficient coverage of informative nonribosomal transcripts. In eukaryotic samples, this is typically achieved by selective oligo(dT)-priming of messenger RNAs to exclude ribosomal RNA (rRNA) during cDNA synthesis. However, this strategy is not compatible with prokaryotes in which functional transcripts are generally not polyadenylated. To overcome this, we adopted DASH (depletion of abundant sequences by hybridization), initially developed for eukaryotic cells, to improve both the sensitivity and depth of bacterial RNA-seq. DASH uses the Cas9 nuclease to remove unwanted cDNA sequences prior to library amplification. We report the design, evaluation, and optimization of DASH experiments for standard bacterial short-read sequencing approaches, including software for automated guide RNA (gRNA) design for Cas9-mediated cleavage in bacterial rDNA sequences. Using these gRNA pools, we effectively removed rRNA reads (56%-86%) in RNA-seq libraries from two different model bacteria, the Gram-negative pathogen Salmonella enterica and the anaerobic gut commensal Bacteroides thetaiotaomicron DASH works robustly, even with subnanogram amounts of input RNA. Its efficiency, high sensitivity, ease of implementation, and low cost (∼$5 per sample) render DASH an attractive alternative to rRNA removal protocols, in particular for material-constrained studies where conventional ribodepletion techniques fail.

View more