Cooperative Plasminogen Recruitment to the Surface of *Streptococcus canis* via M Protein and Enolase Enhances Bacterial Survival

Cooperative Plasminogen Recruitment to the Surface of *Streptococcus canis* via M Protein and Enolase Enhances Bacterial Survival

Marcus Fulde,a,b Manfred Rohde,a Andy Polok,a Klaus T. Preissner,f Gursharan Singh Chhatwal,a Simone Bergmann,a,d

Helmholtz Centre for Infection Research (HZI), Department of Medical Microbiology, Braunschweig, Germany; Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany; Department of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany; Technische Universität Braunschweig, Institute for Microbiology, Department of Infection Biology, Braunschweig, Germany.

ABSTRACT *Streptococcus canis* is a zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. Surface-exposed M proteins and metabolic enzymes have been characterized as major virulence determinants in various streptococcal species. Recently, we have identified SCM, the M-like protein of *S. canis*, as the major receptor for miniplasminogen localized on the bacterial surface. The present study now characterizes the glycolytic enzyme enolase as an additional surface-exposed plasminogen-binding protein. According to its zoonotic properties, purified *S. canis* enolase binds to both human and canine plasminogen and facilitates degradation of aggregated fibrin matrices after activation with host-derived urokinase-type plasminogen activator (uPA). Unlike SCM, which binds to the C terminus of human plasminogen, the *S. canis* enolase interacts N terminally with the first four kringle domains of plasminogen, representing angiostatin. Radioactive binding analyses confirmed cooperative plasminogen recruitment to both surface-exposed enolase and SCM. Furthermore, despite the lack of surface protease activity via SpeB in *S. canis*, SCM is released and reassociated homophilically to surface-anchored SCM and heterophilically to surface-bound plasminogen. In addition to plasminogen-mediated antiphagocytic activity, reassociation of SCM to the bacterial surface significantly enhanced bacterial survival in phagocytosis analyses using human neutrophils.

IMPORTANCE Streptococcal infections are a major issue in medical microbiology due to the increasing spread of antibiotic resistances and the limited availability of efficient vaccines. Surface-exposed glycolytic enzymes and M proteins have been characterized as major virulence factors mediating pathogen-host interaction. Since streptococcal infection mechanisms exert a subset of multicombinatorial processes, the investigation of synergistic activities mediated via different virulence factors has become a high priority. Our data clearly demonstrate that plasminogen recruitment to the *Streptococcus canis* surface via SCM and enolase in combination with SCM reassociation enhances bacterial survival by protecting against phagocytic killing. These data propose a new cooperative mechanism for prevention of phagocytic killing based on the synergistic activity of homophilic and heterophilic SCM binding in the presence of human plasminogen.

S. canis is an opportunitic zoonotic pathogen that belongs to group G streptococci. *S. canis* colonizes mucosal surfaces and the skin as a commensal but can also cause serious invasive diseases, such as streptococcal toxic shock syndrome, necrotizing fasciitis, septicemia, and meningitis, in domestic animals and in humans (1, 2). Only scant information is available so far regarding virulence factors of *S. canis*. In 2010, a streptococcal protective antigen (SPAsc) that shared sequence homology with SPA of other streptococcal species, such as *S. equi* and *S. pyogenes*, was described (3). A protective response of SPAsc was shown in a mouse model of infection (3).

Recently, we identified the M-like protein of *S. canis* (SCM) as a plasminogen binding protein expressed on some clinical *S. canis* isolates (4). SCM is a 45-kDa fibrillar protein which is covalently anchored to the cell surface via a conserved LPxTG motif (4). The M proteins of streptococci represent major virulence factors due to their antiphagocytic activities (5–7). These antiphagocytic properties are explained by binding to a variety of different host proteins, with the most prominent one being fibrinogen (8–12). Another hypothesis relies on the M-protein-mediated formation of large bacterial aggregates, thereby inhibiting phagocytic engulfment (13). During the infection processes, several human-pathogenic streptococcal species interact with various host proteins circulating in human blood, such as plasminogen (14–17). Plasminogen is a major component of eukaryotic fibrinolysis and serves as a precursor of the broad-spectrum serine protease plasmin (18, 19). Plasminogen is composed of five highly conserved cysteine-rich triple-loop structures named kringle domains (each about 13 kDa), followed by the serine protease domain (25 kDa) at the C terminus. The first four kringle domains comprise the plasminogen derivative angiostatin, a potent antiangiogenic polypeptide, whereas kringle 5 and the serine protease domain are described as miniplasminogen.

In contrast to the M-like protein PAM (plasminogen-binding...
group A streptococcal M protein) of S. pyogenes, which binds to the lysine binding site of the second kringle domain (20), SCM has been shown to interact with miniplasminogen (4). This interaction promotes conversion of surface-immobilized plasminogen to proteolytically active plasmin by exploitation of the host-derived activators urokinase (uPA) and tissue-type plasminogen activator (tPA). Equipped with proteolytic plasmin activity, S. canis may degrade aggregated fibrin thrombi, thereby promoting dissemination of the bacteria in tissue (4).

For many bacteria, the presence of more than one plasminogen receptor has been reported, indicating a relevant mechanism for microbe invasion, secured by redundant plasminogen receptor expression (19). Two examples of prevalent bacterial plasminogen receptors in bacteria not expressing M or M-like proteins are enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Prl/SDH), which are found on the surface of several streptococcal species, including S. pneumoniae, S. pyogenes, and oral streptococci (16, 21–24).

Here we report binding of plasminogen to SCM-negative S. canis distributed on the surface of scm-negative S. canis G2 (Fig. 1B). Photometric measurements of plasmin activity using the chromogenic substrate S-2251 demonstrated an exponential increase in plasmin activity for the SCM-positive strain G361, reaching an optical density at 405 nm (OD405) of 3.26 ± 0.01 after 180 min (Fig. 1C). In contrast, a slower but detectable conversion from plasminogen into plasmin (Fig. 1C, inset) directly contributed to the reduced plasminogen binding capacity of all tested SCM-negative strains, although no scm gene could be amplified by gene-specific PCR (Fig. 1A) (see also [4]). For the SCM-expressing strain G361, a binding activity for human plasminogen of 45.45% ± 13.24% was detected. In contrast, scm-negative strains showed reduced binding capacity, resulting in 7.11% ± 1.77% for strain G2, 6.2% ± 2.54% for strain 1022/96, 6.34% ± 2.48% for strain Sc14074-03, 6.09% ± 1.75% for strain 5520/2/10, 5.65% ± 1.75% for strain 2424/96, and 10.08% ± 8.72% for strain 5408/1/10. Similar results were detected using canine plasminogen from the natural host. Scanning electron microscopic visualization detected recruitment of human plasminogen homogenously
FIG 2 Enolase of *S. canis* as surface-displayed plasminogen binding protein (A) (i) FESEM visualization of enolase on the surface of *S. canis* G2 using antienolase antibodies and protein A-gold (15 nm; immune gold labeling). (ii) *S. canis* G2 treated with preimmune serum and protein A-gold (15 nm) exhibits no labeling. (iii and iv) Visualization of enolase using immune gold labeling (10 nm) (arrows) and visualization of plasminogen binding to enolase by plasminogen-gold (15 nm) (arrowheads). (B) Western blot analysis of plasminogen binding to purified *S. canis* enolase (eno) after separation of 1.0 μg and 2.0 μg protein via SDS-PAGE. Plasminogen binding was detected with plasminogen-specific antibodies and horseradish peroxidase-conjugated secondary antibodies. Visualization of binding signals was performed using enhanced chemiluminescence detection. (C) Determination of dissociation constant describing plasminogen binding to *S. canis* enolase via surface plasmon resonance analyses using 4.0 μM, 2.0 μM, and 1.0 μM concentrations of enolase as an analyte (*K*ₐ of 8 × 10⁻⁷ M). (D) Detection of enolase binding to human (hum) and canine (can) plasminogen using the dot spot technique after immobilization of 0.07 μg, 0.13 μg, 0.25 μg, 0.5 μg, and 1.0 μg of plasminogen isotypes onto a nitrocellulose membrane. Signal detection was performed with enolase-specific antibodies followed by peroxidase-conjugated secondary antibodies and enhanced chemiluminescence detection. (E) Dot spot overlay analysis was performed after immobilization of recombinant *S. canis* enolase in amounts of 10.0 μg, 5.0 μg, 2.5 μg, 1.25 μg, and 0.625 μg onto a nitrocellulose membrane. Human plasminogen (Plg), miniplasminogen (mPlg), representing kringle domain 5 and the enzymatic domain, and kringle domains 1 to 4 (K1-4), representing the first four kringle domains at the plasminogen N terminus, were used for protein overlay. Binding was detected with polyclonal plasminogen-specific antibodies and peroxidase-conjugated secondary antibodies followed by enhanced chemiluminescence detection.
enolase using specific antibodies and protein A/G-conjugated gold detected a homogenous distribution of the glycolytic enzyme on the surface of the *S. canis* isolate G2 (Fig. 2A). After incubation of *scm*-negative *S. canis* G2 with plasminogen, electron microscopic detection of enolase and plasminogen using immune gold labeling with 10-nm and 15-nm gold particles visualized colocalization of both proteins on the bacterial surface (iii and iv). After expression cloning of *S. canis* G361 enolase, plasminogen binding to 1.0 µg and 2.0 µg purified enolase protein was analyzed by Western blot overlay. Signal detection with enhanced chemiluminescence demonstrated plasminogen binding to the 47-kDa enolase (Fig. 2B). In order to evaluate binding affinity of enolase-plasminogen interaction, surface plasmon resonance (SPR) studies were conducted. Human plasminogen was immobilized on a CM5 sensor chip, and purified *S. canis* enolase was injected as an analyte in different concentrations (4.0 µM, 2.0 µM, and 1.0 µM). Evaluation of the dissociation constant according to the Langmuir 1:1 binding model provided by the evaluation software determined an equilibrium dissociation constant (KD) of 8 × 10⁻⁷ M for *S. canis* enolase-plasminogen interaction (Fig. 2C). This dissociation constant indicated a weak but specific affinity of the glycolytic enzyme for the host protein. These results were confirmed by dot spot overlay analyses with immobilized human and canine plasminogen, respectively. Enolase protein was bound to both plasminogen isotypes in a concentration-dependent manner, demonstrating a non-species-specific binding of *S. canis* enolase (Fig. 2D).

For identification of plasminogen domains mediating enolase binding, dot spot analyses were performed after immobilization of recombinant *S. canis* enolase in different amounts (10.0 µg, 5.0 µg, 2.5 µg, 1.25 µg, and 0.625 µg) on a membrane. Results of the overlay demonstrated that *S. canis* enolase recruited plasminogen (Plg) and angiotatin kringle domains 1 to 4 (K1-4), whereas no binding to miniplasminogen (mPlg), representing kringle domain 5 and the enzymatic domain at the carboxy terminus, could be detected (Fig. 2E). These results confirmed that *S. canis* enolase serves as a surface-exposed plasminogen binding protein specifically interacting with the amino-terminal kringle domains of plasminogen in a non-species-specific manner.

Enolase-bound plasmin activity mediates fibrinogen degradation and transmigration through semisynthetic fibrin thrombi. In order to analyze enolase-mediated plasminogen activation, the recombinant purified enolase protein was immobilized on Dynabeads and applied in plasmin activity analyses (Fig. 3A). Plasminogen conversion into proteolytic active plasmin was enhanced up to an OD₄₀₅ of 0.29 ± 0.02 at time point 180 min by plasminogen-coated enolase beads (Fig. 3A). Plasmin activity of plasminogen-incubated bovine serum albumin (BSA)-coupled beads reached only an OD₄₀₅ of 0.12 ± 0.02 after uPA application (Fig. 3A). In addition, time-dependent degradation of the plasmin-specific substrate fibrinogen by enolase- and BSA-coated Dynabeads in the presence of plasminogen and the host-derived activator uPA was visualized by Western blot analysis. Substantial degradation of fibrinogen was observed using enolase-coated Dynabeads after 60 min of incubation (Fig. 3B). In control experiments using BSA-coupled beads, substantial degradation of fibrinogen was not detected before 240 min (Fig. 3B). In addition to plasmin-mediated cleavage of soluble purified fibrinogen, degradation of aggregated fibrin...
network, forming a negative imprint at the bacterial contact points with the fibrin matrix (Fig. 3C, iii). Similar results were obtained for plasminogen-preincubated enolase-coated beads, mediating plasmin-dependent cleavage of the semisynthetic fibrin matrix after supplementation of uPA (Fig. 3C, iv to vi). Thus, the enolase-plasminogen interaction of scm-negative S. canis mediates surface-bound plasmin activity that subsequently promotes degradation of soluble fibrinogen and aggregated fibrin matrices.

Secretion and reassociation of SCM to S. canis surface. Release of SCM into bacterial supernatant was analyzed by Western blot analyses (Fig. 4A). SCM-specific antibodies detected the SCM protein in the supernatant of SCM-expressing G361, but no SCM signal was obtained using culture supernatant from scm-negative strain G2 (Fig. 4A). Since the cysteine protease SpeB is responsible for the release of M proteins in S. pyogenes (26), we tested SpeB-mediated proteolytic cleavage in different S. canis strains. As expected, strong proteolytic activity was detected for S. pyogenes strain A60, whereas no cysteine protease activity, and therefore no SpeB activity, was monitored on the bacterial surface of both SCM-expressing S. canis G361 and SCM-negative G2 (Fig. 4B).

Reassociation of M-like proteins has been demonstrated for group A streptococci (13). A variety of different S. canis strains were tested for their ability to bind to recombinant SCM derived from strain G361 (Fig. 4C). A binding capacity of more than 10% was detected for the parental strain G361 (23.5% ± 1.5%), strain 734/95 (10.4% ± 1.3%), strain 566714 (14.1% ± 1.0%), strain Sc1 4074-03 (12.4% ± 0.8%), and strain Sc2 6318-02 (15.6% ± 0.3%). Interestingly, the scm gene was detected in the genome of all these strains as evaluated by PCR (4). In contrast, the scm-negative strains G2 and 1022/96 exhibited binding capacities of less than 5% (3.5% ± 0.1% and 4.1% ± 0.1%, respectively) and were therefore characterized as negative in SCM binding. A 2-fold dilution of the bacterial suspension from 2 × 10⁷ bacteria down to 1 × 10⁷ bacteria reduced the binding capacity from 19.3% ± 0.7% to 13.1% ± 0.6% (Fig. 4D). Reducing the amount of bacteria to 4 × 10⁶ bacteria (1:5) led to a binding capacity of 6.5% ± 0.4%. Finally, a dilution of 1:10 (2 × 10⁶) of the initial inoculum reduced the percentage of SCM binding to 4.0% ± 0.8% and was therefore similar to the result obtained by the nonbinding strain G2 (2.8% ± 0.2%). These data demonstrate a dose-dependent interaction between SCM and G361. This dose dependence of SCM binding relied on the expression of the SCM protein, since supplementation of an increasing amount of nonradio-labeled SCM reduced the binding capacity from 28.7% ± 11.3% to 4.2% ± 0.1% in the presence of excess of 10.0 µg nonlabeled SCM (Fig. 4E). Direct SCM-SCM protein interaction was tested in dot blot overlay assays after immobilization of purified SCM on a
FIG 5 Synergistic plasminogen binding by surface-exposed SCM and enolase of S. canis. (A) Binding of the iodinated SCM protein to SCM-expressing S. canis G361 after incubation with 1.0 μM human plasminogen (G361-Plg) or 1.0 μM angiostatin (G361-K1-4) was determined by gamma counting. (B) Analyses of SCM binding was performed using the SCM-expressing strains G361, H3605, and G13 and the scm-negative isolates 1022/96, G14, and G2. Preincubation of bacteria with 1.0 μM plasminogen (Plg) enhanced binding of iodinated SCM. (C) Binding of iodinated SCM (125I-SCM) and iodinated plasminogen (125I-Plg) was detected after coincubation of SCM-expressing S. canis G361 with radioactive protein and 1.0 μM nonlabeled SCM and plasminogen (Plg). Analyses were performed in triplicate in three independent assays. Percent binding was calculated related to binding of radioactive labeled SCM to fetal calf serum, which was set to 100%. P values ≤ 0.05 are marked by an asterisk. (D) (i and ii) Transmission electron microscopic visualization of SCM recruitment to the surface of scm-negative S. canis G14 was performed using SCM-specific antibodies and protein A/G-coupled gold particles. In contrast to marginal SCM detection without preincubation (i), large amounts of SCM protein signals were detected after preincubation of the bacteria with plasminogen (ii). (iii and iv) Colocalization between plasminogen and SCM was detected after incubation of G2 with plasminogen-gold (10 nm) (arrows), followed by incubation with SCM and immune labeling of SCM with protein A-gold (20 nm) (arrowheads).
Plasminogen Binding Mediates Survival of S. canis

nitrocellulose membrane in amounts ranging from 0.5 μg to 0.03 μg and 125I-labeled SCM for protein overlay. As depicted in Fig. 4F, a specific SCM-SCM binding signal with decreasing intensity could be detected following decreasing amounts of immobilized SCM.

Cooperative plasminogen recruitment to S. canis surface by SCM and enolase. In radioactive binding analyses, iodinated SCM (125I-SCM) was recruited to SCM-expressing G361 bacteria, reaching 20.48% ± 2.14% specific binding (Fig. 5A). Incubation of SCM-expressing S. canis G361 with angiostatin representing kringles domains 1 to 4 (K1-4) resulted in a slightly decreased 125I-SCM binding (16.37% ± 1.77%). A significant increase in SCM binding, to 55.02% ± 2.9% (P < 0.001), was detected after incubation of G361 bacteria with 1.0 μM plasminogen (Plg). These data provide evidence that plasminogen mediates SCM reassociation as bridging molecule via binding to the C-terminal miniplasminogen domain.

The contribution of plasminogen to increased SCM reassociation was further analyzed for several SCM-positive and scm-negative S. canis isolates (Fig. 5B). A similar increase of 125I-SCM binding after incubation with plasminogen was detected for the SCM-expressing strains H3506 and G13, reaching 71.18% ± 2.25% (H3506) and 44.16% ± 2.67%, respectively (Fig. 5B, G13). Although binding of the iodinated SCM protein to scm-negative S. canis 1022/96m reaching 4.58% ± 0.22%, G14 (11.51% ± 0.68%), and G2 (4.12% ± 0.53%) were significantly less than SCM recruitment to G361 (25.69% ± 11.32%) and H3506 (43.30% ± 0.73%), plasminogen recruitment to the bacterial surface enhanced 125I-SCM binding up to 7-fold for S. canis 1022/96 and up to 3-fold for S. canis G14, reaching 31.29% ± 2.47% and 32.19% ± 1.55% binding (Fig. 5B). Further inhibition studies clearly demonstrated that nonlabeled plasminogen and nonlabeled SCM competitively inhibited binding of radioactive plasminogen, whereas nonlabeled plasminogen significantly enhanced recruitment of radioactive SCM to the bacterial surface (Fig. 5C). In contrast to the significant reduction of 125I-plasminogen binding to S. canis G361, from 94.12% ± 12.64% to 41.32% ± 5.55%, after incubation with 1.0 μM nonlabeled exogenous SCM, recruitment of iodinated SCM to S. canis G361 was only marginally inhibited by 1.0 μM nonlabeled SCM protein, reaching 15.78% ± 0.96% binding (Fig. 5C). Interestingly, incubation of S. canis G361 with nonlabeled plasminogen significantly increased binding of iodinated SCM, up to 3-fold, to 73.93% ± 19.18% (Fig. 5C). Detection of the SCM protein on the surface of scm-negative S. canis G14 by electron microscopy visualized the large amount of SCM recruitment after incubation of the bacteria with a complex consisting of SCM and plasminogen (Fig. 5D, i/iii). Furthermore, a direct interaction between Plg and SCM was observed in colocalization studies using gold-labeled Plg and gold-labeled anti-SCM antibodies (Fig. 5D, iii/iv). These data indicate that plasminogen recruitment to the S. canis surface via surface-expressed SCM or surface-exposed enolase promotes recruitment of the exogenous SCM protein.

Complex formation of plasminogen on S. canis surface promotes bacterial survival. The contribution of SCM reassociation with plasminogen-bound S. canis to bacterial survival has been investigated by phagocytosis analyses with neutrophil granulocytes purified from human blood. Binding of plasminogen protected against phagocytic killing of both SCM-expressing S. canis G361 and scm-negative G14. Incubation of the G361 strain with 1.0 μM of purified SCM increased the bacterial survival rate from 0.33% ± 0.14% up to 34.42% ± 8.57% (Fig. 6). Although G14 is not expressing endogenous SCM, bacterial survival was significantly increased, from 0.05% ± 0.01% to 10.25% ± 2.88%, after incubation of G14 with purified SCM. Interestingly, incubation of SCM-expressing G361 with 1.0 μM plasminogen increases survival only marginally, to 4.44% ± 1.63%, whereas the same procedure with scm-negative G14 resulted in a more than 2-fold-higher survival rate of 10.67% ± 3.06%. The highest survival rates, with 59.28% ± 15.10% for G361 and 31.94% ± 12.93% for the scm-negative G14, were reached after incubation of plasminogen followed by SCM binding to the bacterial surfaces (Fig. 6). Recruitment of SCM to the bacterial surface via plasminogen thereby mediated protection against phagocytosis and was independent of endogenous SCM expression.

DISCUSSION

Binding of human plasminogen and subsequent transmigration through fibrin thrombi using surface-bound plasmin activity have recently been proposed to comprise a virulence trait in zoonotic S. canis. We have previously characterized plasminogen binding to surface-displayed M-like protein (SCM) of S. canis as the responsible mechanism (4). In the present study, we characterized a moderate but substantial interaction of SCM-negative strains with both human and canine plasminogen, suggesting the presence of additional plasminogen binding proteins on the S. canis surface. From the literature, it is known that glycolytic enzymes which are displayed on the bacterial surface as moonlighting proteins have been identified as plasminogen binding proteins as well (16, 22, 27). As already demonstrated for enolase of S. pneumoniae (16), electron microscopic studies confirmed a localization of S. canis enolase on the streptococcal surface with a homogenous distribution. In addition to C-termianl localized lyase residues, an internal nonapeptide has been identified as an important
plasminogen-binding motif of *S. pneumoniae* (28). Subsequent sequencing of the entire binding domain of *S. canis* enolase revealed the presence of an identical motif within *S. canis* enolase (data not shown), which most likely contributed to plasminogen binding. Moreover, recombinantly expressed *S. canis* enolase mediated a non-species-specific plasminogen binding to human and canine plasminogen. Surface plasmon resonance using recombinant *S. canis* enolase with immobilized human plasminogen demonstrated a specific interaction, with kinetic dissociation constants in the nanomolar range. And, finally, a direct interaction of surface-exposed enolase and externally administered plasminogen was detected in colocalization studies using immune-electron microscopy (EM). Collectively, these data strongly indicate a physiological relevance of plasminogen binding via surface-exposed enolase, especially in *scm*-negative *S. canis*.

Interestingly, conversion of plasminogen into proteolytic active plasmin was determined for both SCM-positive and -negative *S. canis* strains. Although plasminogen activation by SCM-negative isolates was significantly weaker, a profound plasmin was determined for both SCM-positive and -negative *S. canis*. Results of dot blot overlay analyses confirmed binding of *S. canis* enolase to angiotatin, comprising kringle 1 to 4. The distanced localization of binding sites mediating interaction with SCM and enolase gives rise to the hypothesis that cooperative binding of enolase and SCM to plasminogen may occur simultaneously, as depicted in Fig. 7. Cooperative plasminogen binding to enolase and SCM on the *S. canis* surface is likely to mediate efficient bacterial dissemination within the host tissue. In addition, the presence of both a homophilic self-aggregation via surface-bound SCM and a heterophilic reassociation of SCM to a plasminogen-decorated *S. canis* surface are indicated.

For decades, M proteins have been within the focus of scientific investigation and have been characterized with respect to structural and functional properties in detail. In addition to the fibrous molecular structure (39) containing repeated domains and the alpha-helical coiled-coil dimerization (40, 41), several members of the M-like protein family, such as protein H of *S. pyogenes*, display a homogenous molecular interaction on the bacterial surface mediating bacterial aggregation (13). In electron microscopy studies, SCM-mediated bacterial self-aggregation was visualized for *S. gordonii* bacteria heterologously expressing SCM on their surface but not for *scm*-negative *S. gordonii* (data not shown). The utilization of M proteins as hair-like structures protruding from the surface (42) implied the contribution of this protein in an end-to-end aggregation mechanism mediating bacterial clumping (40). Self-aggregation of streptococcal M- and M-like proteins contributed to bacterial adherence, antiphagocytic properties, and virulence in mouse models of infection (13). In accordance to the reported self-aggregation of protein H, radioactive binding assays demonstrated the significantly increased reassociation of exogenous SCM to the *S. canis* surface after coincubation with human plasminogen.

The antiphagocytic activity of M proteins has been characterized as one of the most important virulence mechanisms of pyogenic streptococci (43, 44). Results of the present phagocytosis analyses are in accordance with binding studies, demonstrating a significantly increased survival of bacteria decorated with SCM. Results of phagocytic analyses further demonstrated an increased bacterial survival after decoration of both SCM-expressing and *scm*-negative *S. canis* bacteria with plasminogen. These data indicate an antiphagocytic activity of bacterium-bound plasminogen.

In a recently published report, antiphagocytic activity has been correlated with plasminogen binding to *Bacillus anthracis* spores as well (45). Plasminogen was shown to be bound to the spores via surface-exposed enolase, thereby mediating evasion from complement opsonization by C3b molecules (45). An even stronger antiphagocytic activity was determined for both SCM-expressing *S. canis* and *scm*-negative bacteria subverting plasminogen as a host-derived cofactor for heterophilic SCM reassociation. Based on similarities to key attributes of proteins from the M-like protein family, SCM was initially characterized as an M-like protein. The observed homogenous self-aggregation and functional antiphagocytic activity clearly classified SCM as an M protein.

In addition to M- and M-like-protein-mediated protection against antibacterial attack by complement (46–50), bacterial aggregation has been designated a further virulence mechanism preventing phagocytic uptake of large bacterial aggregates (13, 51). Both homophilic and heterophilic SCM self-aggregation may promote clumping of *S. canis* bacteria, thereby preventing phagocytic...
host-derived proteolytic activity to bacterial survival after neutrophil kill- ing has also been reported for coaggregates between oral bacteria and other bacterial species (52). This report supports the suggestion of a cooperative aggregate formation in bacterial communities of SCM-expressing and scm-negative S. canis bacteria.

Most of the described M- and M-like proteins facilitate binding of host components like fibrinogen to the streptococcal surface (53). It is assumed that fibrinogen serves as a bridging molecule mediating bacterial aggregation (12, 44). In addition to a direct recruitment of inhibiting complement factors like C4b binding protein to the streptococcal surface (12), binding of fibrinogen to M- and M-like proteins, such as Mrp (M-related protein) of S. pyogenes, has already been shown to reduce surface deposition of complement C3b (12, 44). Streptococcal resistance against phagocytosis by neutrophils has been attributed to both mechanisms, fibrinogen-dependent bacterial aggregation (54, 55) and the hindrance of complement factor binding (9, 12, 17, 44, 56). Fibrinogen-mediated anti-phagocytic activity was not restricted only to S. pyogenes but was also demonstrated for group G streptococci (57), although no reduced binding of C3b was reported.

In conclusion, the decoration of the S. canis surface with human plasminogen via SCM as well as enolase promoted SCM reassociation and mediated antiphagocytic activity. The protection of S. canis against phagocytic killing is based on a complex surface remodeling induced by at least two synergistic mechanisms: first, binding of human plasminogen via SCM and enolase, and second, SCM self-aggregation via homophilic and heterophilic SCM reassociation. These findings extend the gain of functional benefit of host-derived proteolytic activity to bacterial survival after neutrophil uptake and shed new light on the role of plasminogen binding via SCM for S. canis virulence.

MATERIALS AND METHODS

Bacterial strains, media, and growth conditions. S. canis strains were graciously provided by J. Verspoor, Veterinary School, Hannover, Foundation; I. F. Prescott (Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada); B. W. Beall (Centers for Disease Control and Prevention, Atlanta, GA), and M. van der Linden (National Reference Centre for Streptococci, Aachen, Germany). Streptococcal strains were routinely cultivated in tryptic soy broth (TSB) at 37°C without shaking (4). *Escherichia coli* was grown in Luria Bertani (LB) medium at 37°C with continuous aeration (120 rpm). Where appropriate, ampicillin was added at a concentration of 100 μg · ml⁻¹.

Proteins and sera. Human plasminogen was purchased from Sigma. Antibodies directed against pneumococcal enolase were kindly provided by S. Hammerschmidt. Antibodies against human plasminogen were purchased from Acris. Plasminogen-depleted fibrinogen was purchased from Calbiochem. Secondary horseradish peroxidase (HRP)-conjugated anti-goat and anti-rabbit antibodies were purchased from Dako.

Expression cloning and recombinant DNA technique. If not stated otherwise, all enzymes were obtained from New England Biolabs (NEB). Enolase was amplified from the genome of S. canis strain G361 using the primer pair eno_fwd_BamHII (ggg gta tcc ATG TCA ATTT ACT GAT GTT TAG GC) / eno_rev_Sall (ccc gtc gac TTT TTT TTT AAG GTP GTA GAA TGA TTT GAT GCC). The incorporated restriction sites (in bold) and random nucleotides (lowercase letters) for restriction enzyme binding allowed us to subsequently digest the PCR product and subclone it into the expression vector pGEX-6P-1. Overexpression and purification of rENO was carried out under native conditions as per the manufacturer’s instructions. Purified rENO was dialyzed against phosphate-buffered saline (PBS) (1.5 mM KH₂PO₄, 8.0 mM Na₂HPO₄, 2.7 mM KCl, and 137 mM NaCl, pH 7.4). If desired, the glutathione S-transferase (GST) tag was removed using PreScission protease (GE Healthcare). Quantification of the protein was done using the Bradford reagent (Bio-Rad), following the manufacturer’s instructions.

Radioactive binding analyses. Labeling of plasminogen and purified SCM with ¹₂₅I was performed by using Chloramin T according to the method of Hunter and Greenwood (58). Binding experiments with ¹₂₅I-plasminogen and ¹₂₅I-SCM were performed as described previously (4). In brief, for binding analyses, 2 x 10⁹ bacteria were incubated with 100,000 cpm plasminogen (~15 ng) or 200,000 cpm SCM (~15 ng) for 30 min at room temperature (RT). The analyses were performed in triplicate in three independent analyses. For investigation of cooperative binding, the bacteria were incubated for 1 h at 4°C with 1.0 μM nonlabeled SCM or 1.0 μM nonlabeled plasminogen prior to incubation with ¹₂₅I-labeled proteins. Binding of ¹²⁵I-SCM to 2 μl heat-inactivated fetal calf serum (FCS) was used as a positive control. After 30 min of incubation, all binding reactions were precipitated with 10% trichloric acid (TCA), and reaction mixtures were centrifuged at maximum speed for 7 min. After removal of supernatant containing nonbound proteins, bacterium-bound radioactivity was determined using a 1470 Wallac Wizar gamma counter (PerkinElmer). Binding values were presented as percentages related to the determined cpm for precipitation of radioactive proteins with FCS, which was set to 100%.

Immobilization of recombinant enolase to Dynabeads. Covalent immobilization of enolase protein and BSA to carboxylylated polystyrene beads of 1 μm in diameter (Dynabeads MyOne carboxylic acid; Invitrogen) was performed essentially as described by the manufacturer using the “two-step coating procedure with NHS.” In brief, 120 μg recombinant enolase or BSA bovine serum albumin (Roth) was incubated with 300 μl beads (~3 x 10⁹ beads) overnight at 4°C, followed by blocking of unspecified binding with BSA (Roth). Protein coupling was monitored by flow cytometry (FACSComp). Plasmin activity assay. Detection of surface-associated plasmin activity was performed essentially as described by Fulde et al. (4). In brief, triplicates of scm-positive and scm-negative S. canis strains (10⁶ CFU · ml⁻¹) were incubated with 40 μg · ml⁻¹ plasminogen in

FIG 7 Schematic model of synergistic plasminogen binding to S. canis SCM and enolase. Plasminogen binding is mediated via surface-exposed enolase on scm-negative bacteria. Enhanced plasminogen binding is detected on scm-positive S. canis isolates expressing both enolase and M protein on their surface. Secreted SCM reassociates to the bacterial surface by homophilic interaction with surface-linked SCM in addition to heterophilic binding to plasminogen molecules recruited to surface-exposed enolase.

March/April 2013 Volume 4 Issue 2 e00629-12
10 mM PBS for 15 min at 37°C. After removal of unbound plasminogen by washing with 10 mM PBS, uPA (500 ng) was added in order to start conversion from plasminogen to plasmin. As a control, assays without the addition of uPA determined no autocatalytic activities of plasminogen (data not shown). The chromogenic substrate 4-\(-\)naphthyl-\(\beta\)-nitroanilide dihydrochloride (S-2251; Fluka) was added to a final concentration of 400 \(\mu\)M, and proteolytic cleavage was detected photometrically at 405 nm using an enzyme-linked immunosorbent assay (ELISA) reader (Tecan; Sunrise), following a time course of 180 min. Results were given as means for the assays with uPA after subtraction of background activity determined without uPA. For determination of plasmin activity of purified enolase protein, 10 \(\mu\)l of enolase-coated Dynabeads (1 \(\times\) 10\(^6\) beads) were incubated for 30 min with 50 \(\mu\)g human plasminogen. After three washing steps with 10 mM PBS, the beads were incubated with 500 ng uPA (Haemochrom Diagnostica) and measurement was started immediately after adding 20 \(\mu\)l of the plasmin-specific S-2251 substrate. Plasmin activity was determined in time intervals of 30 min up to 180 min using triplicates in three independent assays. For evaluation of plasmin activity and data visualization, background plasmin activity of plasminogen-treated enolase beads without activator was determined, and mean values were subtracted from uPA-incubated probes at each time point of measurement.

Immunoblot analysis. Canine and human plasminogen was spotted onto a nitrocellulose membrane at appropriate amounts. Membranes were blocked using 5.0% skimmed milk in 10 mM PBS as described above and incubated with 100 \(\mu\)g purified plasminogen protein overnight at 4°C. Immunoblot analysis was carried out using antienolase (1:200) antiserum and HRP-conjugated secondary antibodies (1:3,000). For detection of enolase, 10 \(\mu\)l of enolase-coated Dynabeads (1 \(\times\) 10\(^6\) beads) were incubated for 30 min with 50 \(\mu\)g human plasminogen. After three washing steps with 10 mM PBS, the beads were incubated with 500 ng uPA (Haemochrom Diagnostica) and measurement was started immediately after adding 20 \(\mu\)l of the plasmin-specific S-2251 substrate. Plasmin activity was determined in time intervals of 30 min up to 180 min using triplicates in three independent assays. For evaluation of plasmin activity and data visualization, background plasmin activity of plasminogen-treated enolase beads without activator was determined, and mean values were subtracted from uPA-incubated probes at each time point of measurement.

Dot blot overlay. Purified enolase protein was immobilized on a nitrocellulose membrane using 0.625 \(\mu\)g, 1.25 \(\mu\)g, 2.5 \(\mu\)g, 5 \(\mu\)g, and 10 \(\mu\)g protein in 4.0 \(\mu\)l PBS. Unspecific binding sites were blocked by incubation with 10.0% skimmed milk in 10 mM PBS supplemented with 0.05% Tween 20 (PBST) overnight at 4°C. After three washing steps with PBST, the membrane was incubated with 50 \(\mu\)g human plasminogen, 50 \(\mu\)g miniplasminogen, or 50 \(\mu\)g angiotatin overnight at 4°C. After three additional washing steps with PBST, the membrane was incubated with polyclonal plasminogen-specific antibodies from goat (1:500; Acris) in 1.0% skimmed milk followed by incubation with horseradish peroxidase-conjugated secondary antibodies (1:3,000). The antibody detected human plasminogen, miniplasminogen, and angiotatin in similar intensities (data not shown). After extensive washing with PBST, visualization of binding signals was performed by incubation with the substrate solution containing 1 mg \cdot ml\(^{-1}\) 4-chloro-1-naphthol and 0.1% \(\text{H}_2\text{O}_2\) in 10 mM PBS.

Surface plasmon resonance. Binding kinetics of recombinant S. canis enolase and plasminogen (Sigma) were analyzed using the surface plasmon resonance technique as described by Fulde et al. (4). In brief, 35 \(\mu\)l of 1 mg \cdot ml\(^{-1}\) plasminogen was immobilized on a CM5 sensor chip by a standard amine coupling procedure using 20 mM sodium acetate, pH 4.5. Binding analysis was performed using 210 \(\mu\)g \cdot ml\(^{-1}\) purified enolase in HBS BIACore running buffer (10 mM HEPES, 130 mM NaCl, 1.4 mM EDTA, 0.05% Tween 20, pH 7.4) at 20°C using a flow rate of 30 \(\mu\)l \cdot ml\(^{-1}\) in all experiments. The affinity surface was regenerated between subsequent sample injections of analytes with 10 \(\mu\)l of 20 mM NaOH. Binding was assayed at least in duplicate using a BIACore optical biosensor (BIACore 2000 system) and independently prepared sensor chips. Analyses of association and dissociation of S. canis enolase and immobilized plasminogen was performed using the kinetic models included in the BLAevaluation software program, version 3.0. The experimental data were fitted globally according to the simple one-step bimolecular association reaction (1:1 Langmuir kinetic: A + B \(\rightarrow\) AB). All results recorded in this report were within the typical dynamic ranges of BLAevaluation 3.0 software. For each evaluation, a minimum of three data sets corresponding to plasminogen binding reactions at concentrations of 0.4 \(\mu\)M, 0.2 \(\mu\)M, and 0.1 \(\mu\)M enolase were analyzed.

Cysteine protease assay. In order to determine SpeB activity on the S. canis surface, a bacterial culture was cultivated overnight at 37°C without shaking, and 2 \(\times\) 10^9 bacteria were sedimented for 10 min at 4,200 \(\times\) g at RT. The bacterial supernatant was incubated with 200 \(\mu\)l activation buffer containing 20 ml sodium acetate-buffer (0.6% [vol/vol] acetic acid and 8.2 g \cdot liter\(^{-1}\) sodium acetate, pH 5.0), 40 \(\mu\)l EDTA solution (0.5 M), and 0.062 g dithiothreitol (DTT) for 30 min at 40°C, followed by supplementation with 400 \(\mu\)l azocasein (2% [wt/vol]) for an additional 30 min at 40°C. To stop the reaction, 120 \(\mu\)l trichloroacetic acid (TCA) (15% [wt/vol] in 100% acetone) was added and centrifuged for 5 min at 25,000 \(\times\) g. Protease activity was determined by photometrical measurement at 366 nm (Tecan; Sunrise).

Degradation of fibrinogen. Ten microliters of enolase-BSA-coated Dynabeads were preincubated with plasminogen and subsequently added to 4 \(\mu\)g of plasminogen-depleted human fibrinogen (Sigma) in a final volume of 125 \(\mu\)l in PBS following a time series of 30 min, 60 min, 120 min, 150 min, 180 min, 240 min, and 300 min at 37°C. Degradation was started by incubation with 500 ng uPA (Haemochrom Diagnostica), and the reaction was stopped with 50 \(\mu\)l of SDS-containing sample buffer. The supernatants were separated by SDS-PAGE, followed by transfer of proteins to a polyvinylidene difluoride membrane (PVDF) (Immobilon-P; Millipore) using a semidry blotting system. The membranes were blocked as described earlier prior to incubation with rabbit antiserum directed against human fibrinogen (1:2,000; Dako). HRP-conjugated anti-rabbit antibodies (1:3,000) were used, and chemiluminescence-based visualization was performed as described above.

Degradation of fibrin matrix by enolase-coated Dynabeads and scm-negative S. canis for electron microscopic visualization. Fibrin matrix was produced on coverslips by incubating 100 \(\mu\)l of 50 mg \cdot ml\(^{-1}\) plasminogen-depleted human fibrinogen (Millipore) in PBS with 2 \(\mu\)l of 1.0 \(\times\) 10^9 \(\times\) 3-chloro-1-naphthol (from bovine plasma; MP Biomedicals) for 10 h at 37°C. Enolase-coated Dynabeads and S. canis G2 pretreated with plasminogen as described were applied in 200 \(\mu\)l PBS to the fibrin matrix for 1 h. Surface-bound plasminogen was activated with uPA (500 ng). Plasminogen-activated S. canis G2 bacteria were used as a control in the absence of uPA.

Electron microscopy; preembedding labeling of surface-displayed enolase and recruited plasminogen. S. canis was cultured in TSF broth, and 2 ml of the culture was harvested by centrifugation. Bacteria were washed with PBS, and the resulting pellet was resuspended in 200 \(\mu\)l of a 1:25 solution of rabbit antienolase antibodies (2.2 mg/ml IgG, generated by rabbit immunization with recombinant S. pneumoniae enolase). For detection of plasminogen binding, bacteria were incubated with human plasminogen as described for the plasmin activity assay, followed by incubation with goat anti-plasminogen IgG antibodies (80 \(\mu\)g \cdot ml\(^{-1}\)) for 1 h at 30°C. After two washes with PBS, bound antibodies were detected with protein A gold nanoparticles for enolase (15 nm in diameter) or anti-goat IgG gold nanoparticles for plasminogen (15 nm in diameter) by incubating in a 1:25 dilution stock solution. After two washes in PBS, samples were fixed with 2% glutaraldehyde for 15 min at room temperature and washed with TE buffer (20 mM Tris, 1 mM EDTA, pH 6.9) and distilled water. Then, samples were adsorbed onto carbon Butvar-coated copper grids (300 mesh) and observed in a Zeiss Merlin field emission scanning electron microscope (FESEM) at an acceleration voltage of 5 kV. Imaging was done with the high-efficiency SE2 detector. Contrast and brightness were adjusted using the software program Adobe Photoshop CS5.

For colocalization studies of (i) enolase with plasminogen and (ii)
Plasminogen and SCM, plasminogen gold nanoparticles were prepared by incubation of 50 μg of plasminogen with a gold nanoparticle solution, pH 6.2, with 10-nm- or 15-nm-size gold nanoparticles. After incubation for 30 min at room temperature, the gold nanoparticle complexes were centrifuged and resuspended in PBS with 0.5 mg/mL polyethylene glycol (PEG) 20,000. Enolase of S. canis G2 was then localized as described above. After the last washing step, bacteria were incubated in a 1:20 dilution of the stock plasminogen gold nanoparticles (15 nm) for 30 min, washed, and treated as described above.

For colocalization with SCM, bacteria were incubated with plasminogen gold nanoparticles (10 nm) for 30 min and washed twice in PBS, followed by incubation with SCM (150 μg/mL) for 30 min and washing in PBS. Bound SCM was detected with anti-SCM IgG antibodies and protein A gold nanoparticles (20 nm). Samples were further treated as described above, with the exception that imaging was performed at an acceleration voltage of 10 kV.

Visualization of fibrin degradation. After preparation of fibrin aggregates on coverslips and incubation with scm-negative S. canis G2 bacteria as described above, samples were fixed in 5% formaldehyde and 2% glutaraldehyde in cacodylate buffer (0.1 M cacodylate, 0.01 M MgCl₂, and 0.09 M sucrose, pH 6.9) for 1 h on ice. Before dehydration in a graded series of acetone (10, 30, 50, 70, 90, and 100%) on ice for 15 min for each step, samples were washed with TE buffer (20 mM Tris and 1 mM EDTA, pH 7.0). Samples were then subjected to critical-point drying with liquid CO₂ (CPD 30; Bal-Tec). Dried samples were covered with a gold film by sputter coating (SCD 500; Bal-Tec Union) before examination in a Zeiss DSM 982 Gemini field emission scanning electron microscope (Zeiss, Germany) using the Everhart-Thornley secondary electron (SE) detector and the SE-in-lens detector in a 50:50 ratio with an acceleration voltage of 5 kV. Images were recorded on a MO-disk; contrast and brightness were adjusted by applying Adobe Photoshop CS3.

Transmission electron microscopy. For detection of SCM recruitment on the surface of scm-negative S. canis G14, bacteria were incubated with a complex of 1.0 μM human plasminogen and 1.0 μM SCM as described for radioactive binding analyses. Bound SCM was visualized by incubation with rabbit anti-SCM IgG antibodies (80 μg/mL) and protein A gold nanoparticles (15 nm in diameter). After two washes in PBS, samples were fixed in 2% glutaraldehyde for 15 min, washed in PBS, TE buffer, and distilled water, and adsorbed onto Butvar-coated copper grids. Samples were examined in a Zeiss TEM 910 microscope at calibrated magnifications and an acceleration voltage of 80 kV. Images were recorded digitally with a Slow-Scan charge-coupled-device (CCD) camera (1,024 × 1,024; ProScan, Scheuring, Germany) using the IEM software program (Olympus Soft Imaging Solutions, Münster, Germany). Contrast and brightness were adjusted with Adobe Photoshop CS3.

Bacterial survival after phagocytosis by neutrophil granulocytes. Neutrophil granulocytes (polymorphonuclear leukocytes [PMN]) were purified from human blood using a Polymorphprep (Axis-Shield) two-phase density column. In brief, 10 ml human blood was diluted 1:2 with PBS and loaded onto a column. The column was centrifuged for 35 min at 450 × g. The column layer containing PMN was recovered and sedimented (250 × g) for 10 min. Erythrocyte contamination was removed by osmotic lysis with 9 ml ice-cold water for 30 s followed by addition of 1 ml 100 mM PBS and 5 ml Hanks buffered salt solution (HBSS) (Invitrogen). After centrifugation at 4°C for 10 min (250 × g), the PMN were resuspended in 1 ml HBSS supplemented with 0.15 M NaCl and 1.0 mM MgCl₂. Granulocytes (2 × 10⁶) were incubated with 5 × 10⁶ S. canis bacteria for 30 min at 37°C with 5% CO₂. For opsonophagocytosis analyses, bacteria were preincubated with 1.0 μM plasminogen, 1.0 μM SCM, and 1.0 μM of an SCM-plasminogen complex for 30 min at 37°C with 300-rpm shaking. The bacteria were washed with PBS prior to incubation with granulocytes. Bacterial survival was determined by cultivation after plating of serial dilution on blood agar plates. Experiments were performed in triplicate in three independent analyses using granulocytes from three different donors.

ACKNOWLEDGMENTS

We are grateful to Ina Schleicher, Franziska Voigt, Andreas Raschka, and Sarah Podlech for technical assistance. Christine M. Gillen is gratefully acknowledged for help in purification of recombinant enolase.

The study was supported in part by a fund from the European Community’s Seventh Framework Programme under grant agreement no. HEALTH-F3-2009-223111 and by a grant from the BBMF, Clinical Research Unit Pneumonia (to K.T.P.).

REFERENCES

