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Introduction
The identification and validation of new biomarker candidates 

relies upon the availability of clinical specimens like serum and plasma 
that are most often provided by biobank repositories [1]. However, the 
effects of variable preanalytical sample handling and storage have major 
impact on sample quality that affects biomarker discovery. Accordingly, 
the preanalytical bias has been identified as one of the most serious 
threats to profiling experiments that even can abolish meaningful data 
interpretation completely [2]. An analysis of 125 biomarker discovery 
papers published in open-access journals between 2004 and 2009 found 
that more than half included no information about how specimens had 
been obtained, stored or processed [3]. Furthermore, a 2011 survey of 
more than 700 cancer researchers found that 47% had trouble finding 
samples of sufficient quality. Accordingly, either the scope of the study 
was limited (81%) or findings were questionable (61%) [4]. Due to the 
neglected issue of sample quality many recently described biomarkers 
could not be validated independently and therefore had to be classified 

as false positives [5]. To fully assess biospecimen quality, multiple 
quality control markers are needed that are not readily available up to 
now [6]. Accordingly, the analytical monitoring of sample quality is 
obligatory for improved biomarker discovery and validation studies. 
Recently we described an external decay marker for quality control 
monitoring of serum and plasma [7]. However, this approach is 
restricted to prospective quality control analyses as the synthetic 
peptide substrate has to be added to serum- and plasma- tubes prior to 
blood withdrawal and existing collections with native samples are not 
assessable to this approach.

Here we propose the MS-based analysis of patterns from 
endogenous peptides for quality assessment of serum specimens. Blood 
has inherent proteolytic activity that is related to various endoproteases 
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e.g. from coagulation, fibrinolysis and the complement activation [8]. 
In addition, a multitude of exoproteases is also contributing to the 
proteolytic activity of serum and plasma [9]. Consequently, proteins 
and peptides are continuously processed in a time dependent manner. 
We hypothesized that the MS-based monitoring of the proteolytic 
processing of endogenous proteins/peptides might function as a 
‘proteomic degradation clock’ to estimate the preanalytical quality 
of blood specimens. The proteolytic decay of many high abundant 
proteins is initiated during blood withdrawal. The cleavage of proteins 
by endoproteases is generating peptidic fragments that are further 
trimmed down by exoproteases causing ‘ladder like’ degradation 
patterns [10]. This results in the reduction of longer and accumulation 
of shorter fragments during prolonged incubation [7]. For the 
selection of appropriate endogenous decay markers we systematically 
investigated the time dependent changes in peptide profiles of serum 
specimens that were aged under controlled conditions (1 h to 48 h). 
Furthermore, an algorithm was constructed for matching peptide 
profiles to the respective points in time. For this sort of mathematical 
analysis two prerequisites are relevant: First, the data have to be 
reproducible i.e. the time dependent changes of peptide profiles have 
to be consistent and must not be related to interindividual differences 
or any state of disease. Second, a given number of replicate data from 
time-resolved measurements should enable the construction of an 
algorithm to calculate the preanalytical quality of a given sample with 
sufficient precision. 

In summary, we identified 62 endogenous decay markers with time 
related changes of respective concentrations. A training set was used 
for the construction of a regression algorithm that subsequently was 
validated with an independent test set. Quality control analyses should 
be introduced for future biomarker discovery studies to avoid any 
unwanted bias that is related to insufficient sample quality. 

Materials and Methods
Reagents and chemicals

HPLC-grade acetonitrile was purchased from Fisher Chemicals. 
Formic acid and trichloroacetic acid were purchased from Sigma. 
LiChrosolve water was purchased from Merck. All reagents and 
chemicals were at least of analytical grade. 

Serum samples

Whole blood specimens for initial identification and selection of 
decay markers were taken from 3 healthy volunteers. Further blood 
withdrawal was performed from colorectal cancer patients of the 
oncology department at the University Hospital Mannheim. Patients’ 
specimens were either depicted as training set (n=30) or as test set 
(n=20). Blood collection was performed after we obtained institutional 
review board approval and written informed consent. The specimens 
were kept at room temperature for 30 min prior to centrifugation at 
22°C for 10 min at 3000 x g. The specimens were further kept at room 
temperature for the scheduled time and 50 µl aliquots were taken after 
1 h, 2 h, 5 h, 8 h, 24 h, 30 h and 48 h of blood withdrawal. Specimens 
of the training set were kept at room temperature for 1 h-8 h, 24 h, 
30 h and 48 h and processed in equal manner. Any handling and 
processing of serum specimens from the training set and test set was 
performed strictly randomized. An overview of the workflow is given 
in supplemental Figure 1. 

Sample preparation

For deproteinization of the samples 50 µl of ice-cold 10% (v/v) 

trichloroacetic acid (TCA) was added and mixed thoroughly. The 
resulting mixture was kept at 4°C for 30 min prior to centrifugation 
for 15 min at 4°C and 13,000 rpm in a microcentrifuge (Eppendorf, 
Germany). The supernatant was centrifuged for 10 min at 4°C and 
13,000 rpm and 1.5 µl of the supernatant was used for LC/MS-analysis. 

Liquid chromatography-mass spectrometry (LC-MS) analysis

LC-MS was performed using a nano HPLC system (UltiMate 3000 
RSLC; Thermo Scientific Dionex) coupled to a linear ion trap - Orbitrap 
hybrid mass spectrometer (LTQ-Orbitrap XL, Thermo Scientific) with 
a TriVersa NanoMate chip interface (Advion). Liquid chromatography 
was performed on an Acclaim PepMap® RSLC 75 µm ID, 150 mm 
length, C-18 column with 2 µm particles (Thermo Scientific) with a 
flow rate of 300 nl/min and a gradient from 3-60% of buffer B in 37 
min. The composition of buffer A was water with 0.1% formic acid 
and buffer B was 80% acetonitrile with 0.1% formic acid. Each LC run 
was preceded by a blank run ensuring lack of carryover. MS analysis 
was performed in positive ion mode, with a mass range from 340 to 
1700 m/z. Each scan cycle consisted of one FTMS full scan and up 
to seven ITMS dependent MS/MS scans of the most intense ions. 
Dynamic exclusion (30 s), mass width (10 ppm) and monoisotopic 
precursor selection were enabled. The cleavage specificity was set to 
“trypsin”, allowing for a maximum of two missed cleavages. Cysteine 
alkylation due to iodoacetamide (+57.022) treatment was set as 
fixed modification. For peptide identification, MS/MS spectra were 
searched against the Uniprot/Swissprot human data base using the 
PEAKS 6 search engine (Bioinformatics Solutions Inc.) accepting 
common variable modifications. The precursor mass tolerance was set 
to 10 ppm, fragment ion mass tolerance was set to 0.5 Da. The false 
discovery rate was below <1% and this resulted in a -log p-value of 
greater than 18.9. Extracted ion chromatograms (XIC) were analysed 
with Xcalibur software (Thermo Scientific). Exemplary screenshots 
of XIC and MS/MS scans are shown in supplemental Figure 2. Peak 
areas of selected peptides were determined for each point in time via 
Xcalibur quantification method based on the XIC. The peak areas were 

Figure 1: Exemplary results from measurements of 11 decay markers. Each 
measurement was performed in six-fold repetition. The open squares and 
lines inside each box represent the mean and median values; the limits of 
each box represent the 25th and 75th percentiles. The whiskers represent the 
minimum and maximum values.
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normalized to the total ion count (TIC) of respective MS-spectra. The 
dynamic range of label-free LC-MS quantification was at least three 
orders of magnitude and is in line with other reports [7,11].

Reproducibility of reporter peptide spiking

Repeated instrument analysis of one randomly chose sample 
were performed 6 times for selected decay markers (n=11) to 
monitor the reproducibility of label-free peptide quantification. The 
signal intensities of selected decay markers varied in the range of 
approximately three orders of magnitude. As coefficients of variations 
are inversely correlated to signal intensities [12] it is essential to add 
decay markers with low signal intensity to the reproducibility testing. 

Prediction algorithm 

Our aim was to develop an approach that can determine the 

status of a single unknown serum sample from high throughput 
experiments regarding its peptide content. The detailed description of 
the mathematical calculations has already been described [13]. Briefly, 
serum specimens were aged under controlled conditions and peptide 
profiles of respective points in time were generated with LC-MS to 
build a set of specimens depicted as training data. These were checked 
for consistency and specimens with inconsistent behaviour were 
eliminated from further analyses. We used the robust rank correlation 
measure that is freely available as an R package named Rococo [14] 
that has been shown to enable robust classification even when noisy 
numerical data and small sample sets are analyzed [15]. In theory, a high 
correlation between MS-peptide profile measurements of unrelated 
specimens is indicative for comparable preanalytical conditions and 
rather similar points in time. However, some of the identified peptides 
within the MS-profile might behave completely unrelated to the specific 
condition or process of interest (sample aging). Therefore, they could 
deteriorate the correlation coefficient between MS-peptide profiles at a 
given point in time. In order to reduce this effect we removed a fixed 
small number of peptides that lead to the highest increase of the rank 
correlation coefficient. The fixed number of the removed peptides was 
set to three as we expect that 5% of the used peptides in the correlation 
computation may be outliers. The structure of the data enclosed N MS-
peptide profiles measured in R sample sets (training set), at TR different 
points in time. For a given single sample x, N peptides are measured at 
an unknown point in time tk. To assess the point in time tk, the following 
steps were carried out: 1) Measurement of training set of samples for all 
N peptides and consistency check. 2) Removal of replicates that raise 
suspicious behaviour by applying the data consistency check to the 
training set. 3) For measured MS-peptide profiles in the test set at the 
estimation point in time tk of a sample, we compute the robust gamma 
rank correlation coefficient at all available points in time of the training 
data set. 4) For each replicate of the training data set, we chose the point 
in time t(r) that delivers the highest obtained rank correlation coefficient 
with measured cell products at tk. 5) We build the mean value from all 
obtained points in time to assess tk. 

Evaluation and testing

The training set comprised serum specimens (n=210 time points) 
from 30 colorectal cancer patients that were aged under controlled 
conditions (1-48 h). After testing for data consistency one out of 30 
patients was excluded from further analysis. The remaining 29 patients 
were taken as training set to estimate time courses of the selected 62 
decay markers. A test set of independently collected serum specimens 
from further 20 patients was blinded and used for validation. For each 
point in time estimation we computed the correlation coefficient with 
all available replicate points in time in the training set after removing 
the three peptides that allow the highest increase of the correlation 
coefficient during each calculation. Therefore, we obtained from each 
replicate one point in time that represents the highest correlation 
coefficient. By computing the mean of the 29 resulting points in time, 
we determined the point in time at which the measurement of the 
peptides was performed. In fact, there were only minor differences 
between usages of mean value und median for this step.

To visualize our approach, we plotted all computed correlation 
coefficients with all available samples of the training set for each point in 
time where each patient is illustrated with a different color. The plotted 
correlation points display the coherence of the computed correlation 
coefficient depending on the point in time we intend to estimate. The 
average of the selected points in time with the highest correlation from 
each patient of the training set is displayed as a blue line representing 

A

B

Figure 2: A) Time dependent changes of 62 endogenous decay markers 
exemplarily shown for three patients. The heat map was generated with 
Excel 2013 software. The red color represents high signal intensity whereas 
blue color represents low signal intensity of the respective peptides. Green 
arrows indicate the subgroup of eleven decay markers that were selected for 
testing of analytical reproducibility (Figure 1) and interindividual variability 
(figure 2B). B) Signal intensities of eleven decay markers were extracted 
from 6 randomly chosen patients at 3h respectively. The line inside each box 
represents the median. The square inside each box represents the mean 
value. The limits of each box represent the 25th and 75th percentiles, and the 
whiskers represent the minimum and maximum values. Outliers are marked 
as asterisk.
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the estimated point in time. The illustration of both estimated point 
in time and real point in time, allow an intuitive visualization and 
identification of the sufficiency of our presented method.

Results
Peptides for analysis

Initial analysis started with 192 peptides identified in a pilot study. 
The number of peptides was reduced subsequently and peptides with 
low signal intensities, instable ionisation, poor identification reliability 
and rapid loss of signal intensity over time were excluded. Finally, 62 
peptides were selected as decay markers for further analyses. These 
peptides originate from common serum proteins like fibrinogen, 
coagulation factors, components of the complement system or inter-
alpha-trypsin inhibitor heavy chain H4 and are in line with previously 
reported results [16]. A summary of the results is shown in Table 1. 
Details of endogenous reporter peptides are given in supplementary 
Table 1. 

Reproducibility 

To monitor the technical reproducibility of quantitative peptide 
analysis, one sample was measured 6 times consecutively. Eleven 
endogenous decay markers with different signal intensities that 
ranged over approximately three orders of magnitude were selected 
for reproducibility testing (Figure 1). The highest median signal 
intensity of 693,242,168 [a.U.] was observed for m/z 733.33 whereas 
lowest median signal intensity of 1,538,601 [a.U.] was observed for m/z 
629.63. In any case the coefficient of variation (CV) was smaller than 13 
% underlining the good reproducibility of peptide quantification with 
LC/MS [7]. 

Kinetics

Most often a fast decrease of signal intensity was detected. However, 
few other peptides increased over time. The time dependent changes 
of 62 endogenous decay markers is shown for three randomly chosen 
patients in Figure 2A. Values were log transformed prior to heat map 
visualization using the Excel 2013 software. The “overall pattern” of the 
three patients is rather similar, although absolute signal intensities are 
showing great interindividual variability (Figure 2B).

Mathematical modelling

The training set initially comprised 210 time points from 30 
colorectal cancer patients. After testing of consistency one cancer 
patient had to be excluded due to irregular kinetics of peptide decay 
that markedly varied from specimens of the other 29 patients (Figure 

3A). For a good correlation a pair wise depiction of two samples must 
show a continuous increasing curve as exemplarily shown in Figure 3B.

As illustrated in Figure 4, the presented method shows more 
reliable result at early points in time. The position of the violet vertical 

Figure 3: Exemplary rank correlation curves. Each point in time of sample x is 
plotted against the most suitable point in time from sample y. (A) Decreasing 
curves indicate samples with minor correlation at least at one point in time. (B) 
Correlating samples result in non-decreasing curves. [13].

Figure 4: Examples for estimation of points in time. Plotted points present 
computed correlation coefficients of the point in time we intend to estimate 
with all available samples of the training set. Each color illustrates one different 
patient. The average of the selected points in time with the highest correlation 
from each patient of the training set is displayed as a blue line representing 
the resulting estimated time. A) Estimated point in time (blue line) is almost 
identical to the real point in time (1.8h; violet line) B) Estimated point in time 
(blue line) is deviating from the real point in time (30.2 h; violet line) [13].

Protein Symbol Accession
number

molecular 
weight
[kDa]

number of 
selected 
peptides

Albumin ALB P02768 66 1
Complement C3 C3 P01024 187 2
Factor II F2 P00734 70 4
Factor XIII A chain precursor F13 P00488 83 2
Fibrinogen alpha  chain FGA P02671 95 29
Fibrinogen beta chain FGB P02675 56 13
L-Fucose Kinase FUK Q8N0W3 118 3
Inter-alpha-trypsin inhibitor 
heavy chain H4

ITIH4 Q14624 103 3

Kininogen-1 KNG1 P01042 72 3
Thymosin beta-4 TMSB4X Q0P5T0 7 2

Table 1: List of protein precursors of endogenous peptides used decay markers.
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line (true time) and the blue vertical line (estimated time) are nearly 
identical and this indicates a high prediction accuracy (Figure 4A). 
In contrast, the inaccuracy of estimated points in time is increasing 
over the time as shown in Figure 4B. From each specimen we select 
the highest correlation value for determination of respective points in 
time. An example of the distribution of the highest correlation values 
used to estimate the time point presented in Figure 4A is illustrated 
in the boxplot in Figure 5. The resulting approximate range of the 
highest correlation values used for the estimation is 0.83–0.97. More 
than 100 data points were created from 29 patients as training set and 
data from further 20 patients as test sets. The data from the training set 
were blinded prior to further analysis. Estimated points in time were 
plotted against the real points in time respectively and coefficient of 
determination (R2) had a high value of 0.89 (Figure 6A). However, the 
absolute error increased markedly for older specimens (Figure 6B). 

Discussion
Proteomics approaches are powerful tools for biomarker discovery 

and thereby can improve early detection, staging, therapeutic 
monitoring and prognosis of various diseases including cancer [17]. 
Despite much progress in the field, the introduction of new biomarkers 
for routine diagnostic applications is rare [18]. In contrast, the number 
of possible biomarker candidates from a multitude of proteomic 
profiling studies is rather high. However, most of these biomarkers 
could not be validated independently and consequently had to be 
classified as false positive [5]. Most important, the preanalytical bias in 
sample handling has been identified as one of the most serious threads 
for profiling experiments [2,19]. Specifically, mass spectrometry based 
proteomic profiling approaches are prone to preanalytical interference 
factors that profoundly affect the peptide profiles of blood specimens 
[20,21].

Most attempts for quality assurance of proteomic specimens are 
focusing on the standardization of preanalytical steps that comprise 
blood collection, transport, centrifugation and storage. Multiple 
working groups have defined standard operating procedures for 
documentation of preanalytical sample handling. These include 
‘Biospecimen Reporting for Improved Study Quality’ (BRISQ) [22], 
‘Standard PREanalytical Code’ (SPREC) [23] and ‘Standardisation and 
Improvement of Generic Pre-analytical Tools and Procedures for In Vitro 
Diagnostics’ (SPIDIA) [http://www.spidia.eu/]. The documentation of 
sample collection, processing and storage is important. However, this 
might be insufficient as many factors that influence sample quality 
can hardly be controlled under routine laboratory conditions [24]. 
Furthermore, the in depth documentation of various preanalytical 
conditions as proposed by Lehmann et al. [23] is rather laborious and 
might be missing for specimens collected within a clinical biobanking 
setup. 

Accordingly, direct analysis of sample quality (DASQ) seems to 
be an attractive alternative [25] and is mandatory for transcriptomic 
analyses [26]. However, DASQ prior to proteomics experiments is not 
feasible up to now [6]. 

We hypothesized, that the monitoring of the preanalytical time 
span can be realized by quantification of proteolytically derived 
fragments of endogenous proteins/peptides that are generated in serum 
in a time dependent manner. However, there are two major hurdles 
that have to be considered. First, the proteolytic activity that is related 
to the processing of decay markers should have ‘housekeeping quality’ 
meaning that it should not be related to any state of disease including 
cancer and inflammation. Second, the interindividual variability of 
protein concentrations [27] and respective polymorphisms [28] should 
be taken into account. 

Regarding the ‘housekeeping quality’ of exoproteolytic activity in 
serum- and plasma specimens we previously could demonstrate that 
the processing of an exogenous decay marker is independent of the 
disease state when healthy controls and colorectal cancer patients were 
compared [7]. In this study 62 peptides were selected as endogenous 
decay markers in healthy individuals that further on were validated 
in a set of colorectal cancer patients and the compliance of results is 
indicating a disease-independent pattern of decay markers. Peptides 
were quantified using a label-free approach that has clear limitations 
when compared to exact quantification with stable isotope labeled (SIL)-
peptides as internal standard. However, the analytical reproducibility 
of our method is fit for purpose as the CV of analytical reproducibility 

Figure 5: Example distribution of the highest correlation values used to 
estimate the time point of 1.8 h (Figure 4A). 

A

B

Figure 6: Classification accuracy. A) The preanalytical time span of blinded 
serum specimens from the test set was calculated and plotted against the real 
points in time. B) Differences of estimated and real points in time were plotted 
against the real points in time. 
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(Figure 1) is clearly below the biological variability (Figure 2B). 
Generally, the great biological variability of proteins respective 
peptides in serum is a mathematical challenge. However, robust rank 
correlation measures showed sufficient accuracy for classification of 
specimens from the training set of serum specimens that were aged 
under controlled conditions but blinded prior to analysis. The training 
set data were taken at discrete times. This might be a limitation as 
predicted times of the test set were continuous. It should be clarified 
in further studies if classification accuracy can further be improved by 
continuous data of the training set.

The kinetics of peptide degradation is complex and most often 
the absolute changes of decay marker concentrations are decreasing 
during prolonged praeanalytical time span (Figure 2A). Accordingly, 
changes in signal intensities from severely aged samples (>24 h) are 
rather small when compared to moderately aged specimens (<8 h). The 
algorithm was optimized for an incubation time <8h (Figure 6B) as this 
is the time period of most interest. A given sample that has been aged 
for thirty or fifty hours at room temperature is old in any way and in 
most cases much too old for further analysis. However, discrimination 
between e. g. three and six hours might be of high relevance for some 
investigations. Consequently, the classification error for more aged 
samples seems to be acceptable. 

Taken together, the preanalytical variability is a long known 
interference factor in laboratory testing [29]. There is raising awareness 
that also research studies for biomarker identification are critically 
affected from low sample quality [30,31]. Consequently, methods 
for direct analysis of sample quality are urgently needed [32]. The 
presented data from our proof of concept study are preliminary and 
have to be validated prospectively. Furthermore, a broader pattern of 
praeanalytical variability including long term storage [33] and freeze 
thaw cycles [34] will have to be investigated in future studies.
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