The myxobacterial metabolite Soraphen A inhibits HIV-1 by reducing virus production and altering virion composition.

Eric Fleta-Soriano*, Katarína Smutná*, Javier P. Martinez†, Cristina Lorca Oró‡, S. Kashif Sadiq†, Gilles Mirambeau‡, Carmen Lopez-Iglesias‡, Marta Bosch‡, Albert Pol†,7, Mark Brönstrup§, Juana Diez§ and Andreas Meyerhans†,7#

Infection Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain†; AIDS Research group, IDIBAPS, Barcelona, Spain‡; Cryo-Electron Microscopy Unit, CCiTUB, Universitat de Barcelona, Barcelona, Spain‡; Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain‡; Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany§; Molecular Virology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain†; Institut Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain‡.

Running Head: Soraphen A-mediated HIV inhibition

* Address correspondence to Andreas Meyerhans, andreas.meyerhans@upf.edu; and Javier P. Martinez, javier.martinez@upf.edu

† E.F.S and K.S. contributed equally to this work

Keywords
Soraphen A, HIV, fatty acid synthesis, host factor, broad-spectrum antiviral
Soraphen A is a myxobacterial metabolite that blocks the acetyl-CoA carboxylase of the host, and was previously identified as a novel HIV inhibitor. Here we report that Soraphen A acts by reducing virus production and altering the gp120 virion content, impacting entry capacity and infectivity. These effects are partially reversed by addition of palmitic acid, suggesting inhibition of HIV Env palmitoylation as one of the mechanisms of antiviral action.
Cellular lipids play an important role in the propagation of diverse viruses (1). A key pathway in the lipid metabolism is de novo fatty acid synthesis mediated by the acetyl-CoA carboxylase (ACC) and the multifunctional fatty acid synthase (FAS). Blocking these enzymes by small molecules leads to broad-spectrum inhibition of several viruses including hepatitis C virus (HCV), West Nile virus (WNV), Dengue virus (DENV), yellow fever virus (YFV), rotavirus (RV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV) and influenza virus (2-7). A highly potent inhibitor of ACC is Soraphen A (SorA), a myxobacterial secondary metabolite we have previously identified as an HIV inhibitor in an antiviral screening assay (8) and recently shown to efficiently inhibit HCV with a large therapeutic window (9). Here we sought to further determine the anti-HIV properties of SorA.

To analyze the antiviral potency of SorA, TZM-bl cells or primary peripheral blood mononuclear cells (PBMC) were infected with HIV~LAI~ and HIV~Bal~ wild-type strains and with a primary HIV isolate from clade A under increasing SorA concentrations (Figure 1A-D). The production of infectious virus was then tested by titrating the culture supernatants on TZM-bl cells with a luciferase read-out (10, 11). The effect of SorA on cell viability was assessed in parallel by a commercial ATP assay. SorA reduced infectious virus production in a dose-dependent manner. The calculated effective concentration 50 (EC~50~) ranged from about 0.2 µM to 2 µM depending on the cells and virus used. No SorA-mediated toxicity was detected up to the 50 µM concentration tested.

The inhibitory effect of SorA was verified by p24 intracellular immunostaining of lymphoid MT-2 cells infected with HIV-1~LAI~ in the presence or absence of SorA or the
ACC inhibitor 5-(Tetradecyloxy)-2-furoic acid (TOFA) as control, (Figure 1E-H). SorA reduced p24 production compared with the DMSO control but did not completely abolish it (Figure 1G, left panel). No p24 was detected when fresh cells were incubated with supernatants from SorA-treated infected cells, thus confirming that the inhibitory effect occurs mainly on late processes in the HIV-1 life cycle (Figure 1G, right panel). These results are consistent with our prior work, which first demonstrated the anti-HIV effect of SorA (8).

An altered lipid content of cells may change membrane composition and fluidity that, in turn, could interfere with the reorganization of HIV structural proteins during viral maturation (12, 13). To test this, cholesterol content and fluidity of SorA-treated Jurkat T cell membranes and PBMC membranes were analyzed by flow cytometry using the cholesterol-binding antibiotic filipin (14, 15), and the fluorescent membrane-partitioning dye di-4-ANEPPDHQ, respectively. In the latter, the fluorescence emission is sensitive to the membrane order of its local molecular environment (16, 17) (see Supplemental Material for details). For both assays, cyclodextrin, which leads to cholesterol depletion and increased fluidity of membranes, was used as positive control.

Neither the cholesterol content (Supp. Fig. 1A) nor the membrane fluidity (Supp. Fig. 1B and C) changed significantly after SorA treatment. To test if maturation of HIV particles is inhibited by SorA, latently HIV-1-infected ACH2 cells cultured in the presence of the drug were activated with the HDAC inhibitor Vorinostat (VOR) to produce virus. 48h after activation, cells were fixed with glutaraldehyde, stained with osmium tetroxide and analyzed by transmission electron microscopy (TEM). More than 500 viral particles per condition were counted by TEM and classified as mature, immature or undetermined (Figures 2A-D). The HIV protease inhibitor Lopinavir (LPN) was used as a positive control. As shown in Figure 2E, around 90% of viruses were mature in SorA-treated
samples, a number similar to the DMSO control. In contrast, around 90% of viral particles were immature in the LPN control.

As the SorA effect occurs at late steps of the HIV replication cycle but is not influencing maturation, we next analyzed the CD4 receptor binding and membrane fusion capacity of viruses produced from SorA-treated cells. For the first experiment we made use of the property of HIV particles to bind CD4 but not fuse nor enter when exposed to target cells at 4°C (18). Briefly, TZM-bl cells were spinoculated for 30 min at 4°C with 10 ng p24-containing supernatants obtained from activated ACH2 cells in the presence or absence of SorA. Cells were then washed, lysed and viral p24 quantified by ELISA. As shown in Figure 2F, CD4 binding of viruses produced from ACH2 cells in the presence of SorA was reduced by 50%. To determine the capacity of viruses to fuse to the target cells, we used an enzyme-based HIV-1 fusion assay (19). Jurkat cells were infected with equal p24 amounts of HIV pseudoparticles containing a Vpr-BlaM fusion protein produced in the presence of SorA or LPN. Samples were incubated at 37°C to allow viral fusion and loaded with CCF2-AM, the substrate for β-lactamase. The fusion inhibitor Enfuvirtide (T20) was used as positive control. Samples were incubated overnight, analyzed by flow cytometry and used to estimate fusion capacity as described (19). As shown in Figure 2G (and supplemental Figure 2) we observed a >60% membrane fusion reduction of HIV particles generated in the presence of SorA. Given that the effect of SorA in reducing virus entry was not due to a defect in maturation, we next determined the relative amounts of p24 and gp120 in viral particles produced in the presence of the drug. For this, p24 and gp120 amounts in virus-containing supernatants from activated ACH2 cells and from PBMC infected with HIV_LAI in the presence or absence of SorA or DMSO as control were quantified by ELISA. As shown in Figure 2H, SorA reduced the content of both proteins related to the DMSO control. For p24, the relative reduction was
around 50%. The effect was more pronounced for gp120, with 80% and 60% reduction respectively. To exclude a SorA-mediated effect on global HIV transcription, we next performed qPCR in both SorA-treated infected cells and in virus-containing supernatants. Compared to DMSO control, SorA treatment reduced HIV RNA in virus-containing supernatants but not in infected cells (Supplemental Figure 3). Together, these results suggest an overall drug-induced alteration in virion composition that results in loss of infectivity.

Inhibition of de novo fatty acid synthesis leads to a reduction of palmitic acid (PA), which is the end product of this pathway (2, 20). As the HIV-1 envelope (Env) is commonly palmitoylated at the cysteine amino acids C764 and C837 in the C-terminal tail of gp41 (21), we hypothesized that PA addition to the culture medium would recover the infectivity of viruses produced from SorA-treated cells. To test this, several HIV-1 pseudoviruses (HIVpp) with variations in the number of palmitoylation sites in Env were generated in HEK 293T cells in the presence or absence of SorA with or without the addition of PA. The HIV NL4.3-derived backbone plasmid pNLE-ΔEnv (22) was co-transfected together with HIV-1Env expression plasmids carrying two palmitoylation sites (pHXB2 and pW61D_TCLA.71), one (pWITO4160 and pSS1196.1) or no palmitoylation sites (pBal.26 and pMN.3). 48 h after transfection, supernatants were clarified by centrifugation and pelleted in a sucrose buffer as described (23) to minimize the presence of non-particle associated antigens. Virus-containing pellets were analyzed for p24 and gp120 content by Western Blot and for infectivity in TZM-bl cells. The relative values with respect to the produced HIVpp without SorA addition are given in Figure 3. SorA inhibited the infectivity (Fig. 3A) and reduced both the p24 (Fig. 3B) and gp120 (Fig. 3C) content in all virus-containing samples. Addition of PA partially restored the inhibitory effect of SorA (Fig. 3A-C, black bars). The recovery in infectivity (Fig.
3D) and gp120 levels (Fig. 3F) seems to be dependent on the number of palmitoylation sites, being highest when 2 such sites were present in Env. For p24 the recovery effect was less evident (Fig. 3E). Although in the conditions tested the values obtained did not reach statistical significance, the observed tendency suggest that the SorA-mediated reduction in virus infectivity is mechanistically linked to a defect in Env palmitoylation.

The role of palmitoylation in HIV infectivity remains controversial. While Rouss and co-workers defined Env palmitoylation as critical for HIV infectivity (24) and Bhattacharya et al. showed a 60-90% infectivity reduction of virus mutants that cannot be palmitoylated (25), data by Chan et al. suggest that palmitoylation does not affect HIV-1 infectivity (26). The explanation for this discrepancy is likely within the experimental details of the different test systems and virus constructs used that may directly affect Env densities on viral particles and thus virus infectivity and palmitoylation dependency. The cytoplasmic tail of gp41 that harbours the palmitoylation sites and the Gag matrix domain within Gag plus several host cell components are important players in Env incorporation into the virion (27, 28). Env density then can affect virus infectivity (29), however this is predicted to vary between HIV strains that exhibit different entry stoichiometries requiring between 1 to 7 Env trimers to complete the infection process (30). Thus a number of effects may mask a reduction of infectivity due to lack of Env-palmitoylation. Nonetheless, the HIV-1 Env palmitoylation sites are highly conserved among different virus strains suggesting their functional importance for HIV-1 propagation. The data presented here seems to reinforce this notion.

In summary, SorA exhibits multiple inhibitory effects on the HIV life cycle at low micromolar concentrations. Its ability to inhibit with a high potency a key element of the de novo fatty acid synthesis pathway (31) that is critical for the efficient expansion of many different viruses, and its low toxicity for eukaryotic cells makes SorA an attractive...
starting point for the development of a broad-spectrum antiviral drug. Further studies with SorA derivatives are envisioned.

Financial support:
The authors are supported by grants FPI grant number BES-2011-048569 (to EFS), SAF2013-46077-R and SAF2016-75505-R (to JM and AM), BFU2016-80039-R (to JD), all from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER (AEI/MINEICO/FEDER, UE), the “Maria de Maeztu” Programme for Units of Excellence in R&D (MDM-2014- 0370), and from the German Centre for Infection Research (DZIF, to MB). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Literature cited

Legend to figures

Figure 1. Soraphen A inhibits infectious HIV production. TZM-bl cells or PBMC were seeded in 96-well plates and treated with increasing concentrations of SorA in triplicate. TZM-bl cells (A) or PBMC (B to D) were infected with HIV-1_LAI (A, n = 5 and B, n = 4), HIV-1_BAL (C; n=5) or a primary isolate of HIV-1 KER2018 (D; n=3) at a multiplicity of infection (MOI) of 0.5. Supernatants were used to re-infect new TZM-bl cells. A representative curve is shown in every case. Infection (triangles) and cell viability (squares) are marked. The mean relative light units (RLU) are plotted as % relative to DMSO control (vehicle). Error bars: standard error of the mean (SEM). (E-H) MT-2 cells were spinoculated with HIV_LAI and treated with SorA or TOFA as control.
48h after infection, supernatants were collected and used to infect new MT-2 cells, while
cells were fixed and stained for HIV-p24 protein (green signals) and with DAPI (blue signals) (left panels). Newly infected MT-2 cells were then analysed alike (right panels). Non-infected MT-2 cells (E) and infected but untreated MT-2 cells (F) were used as negative and positive controls, respectively.

Figure 2. Soraphen A does not impair virion maturation but affects binding to CD4 and membrane fusion to target cells. (A-D) ACH2 cells were activated with Vorinostat (Vor) and treated with SorA (10µM), Lopinavir (10µM, LPN) or DMSO (mock). 48h after infection cells were fixed and processed for transmission electron microscopy (TEM). TEM pictures were taken of untreated ACH2 cells (A), as well as Vor+DMSO (B), Vor+SorA (C) and Vor+Lopinavir (D) treated cells. (E) The number of mature (white), immature (black) and unclassified (grey) viral particles is presented. (F) Normalized CD4 binding is represented (n=2). Mock-treated activated ACH2 cells and non-activated ACH2 cells were used as controls. (G) HIV pseudoparticles containing a Vpr-BlaM fusion protein were produced from transfected 293T cells in the presence of SorA (10µM), LPN (10µM) or DMSO (mock) and used to infect Jurkat cells by spinoculation. Normalized HIV fusion values are shown (n=5; *, p<0.05; **, p<0.01). (H) Levels of p24 and gp120 relative to DMSO control (set to 1) are shown. The dotted line highlights the half relative levels. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.

Figure 3. Palmitic acid restores the Soraphen A-mediated inhibition of infectious HIV production (A-F) Effect of SorA on produced HIVpp infectivity (A), p24 content (B) and gp120 content (C), and its reversion by palmitic acid addition. HIVpp with Env proteins that carry mutations in the gp41 palmitoylation sites Cys764/Cys837 were
produced from 293T cells in the presence of 10µM SorA or DMSO control (vehicle) and tested for infectivity, p24 and gp120 content. Reductions as well as recovery levels by palmitic acid addition are shown as normalized values relative to the DMSO or DMSO plus PA controls, respectively. The Env proteins of the HIVpp differ in the number of their palmitoylation sites at residues 764/837 and have the following features: Cys764/Cys837 in HXB2 and W61D, Cys764/no Cys837 in WITO, no Cys764/Cys837 in SS1196 and no Cys764/no Cys837 in Bal and MN.3. The recovery was calculated subtracting the mean infectivity (from three independent experiments), p24 or gp120 values of samples not treated with PA from the values of the samples treated with PA for each virus (D-F). The % PA-mediated recovery of virus infectivity (D), p24 (E) and gp120 (F) related to the number of palmitoylation sites is given. The dotted lines highlight the half relative levels. Values for B and C are derived from Western Blot quantification of p24 and gp120, respectively. Single concentrations of compounds were chosen based on inhibitory extent and lack of toxicity.