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Supplementary information 1 

Supplementary Methods 2 

Model overview 3 

The hepatic insulin signaling model included five signaling molecules, insulin receptor 4 

(R), IRS1 (S1), IRS2 (S2), Akt (B), and aPKC (C). The model was fitted to two published 5 

data sets simultaneously (described in the main text). The pre-hepatic insulin level has 6 

not been measured in both data sets. The estimation of pre-hepatic insulin, namely the 7 

input to the model, is also described below. All the simulation work was done based on 8 

SBPD toolbox for Matlab 
1
. The bifurcation analysis was done with Matcont 

2
. Matlab 9 

code for generating main figures in the main text and main Supplementary Figures are 10 

included in Supplementary Software 1.  11 

 12 

Given the fact that the number of unknown parameters is more than that of experimental 13 

data points, we took a parsimonious manner in designing the model in order to have 14 

minimal number of unknown parameters. Firstly, for those processes that no data is 15 

available, multiple intermediary processes were lumped into one kinetic term. This 16 

applied to insulin receptor and IRS1/2 activation. Secondly, for feedbacks that have 17 

overlapping effects, we implemented only one that is upstream to others. This applied to 18 

Akt, since Akt has been reported to positively feedback to insulin receptor 
3
, IRS1 

4
 and 19 

itself 
5
. In this case, only the feedback from Akt to insulin receptor was implemented in 20 

the model (Akt auto-feedback was also tested). Lastly, interactions, including feedback 21 

and crosstalk mechanisms, are represented in the model by Hill functions of the following 22 

forms: 23 
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where the subscripts a and i indicate activation and inhibition, respectively. p is in the 25 

range [0, 1]. X represents the concentration of the molecule that carries out the action, m 26 

is the half-maximal concentration.   27 

Model 28 

Insulin receptor (R) 29 

The insulin receptor is activated following insulin (I) binding. With physiological levels 30 

of insulin (<5nM), binding of a second insulin molecule on the receptor is rare and 31 

therefore is neglected here. The ligand binding and the following auto-phosphorylation of 32 

the receptor are lumped into one kinetic term (r1f). Dephosphorylation of activated 33 

receptor (r1b) is regulated by Akt (Ba) mediated feedback. The activated receptor (Rp) 34 

then undergoes internalization (r2f), which is regulated by aPKC (Ca). Internalized 35 

receptor undergoes dephosphorylation (r3f), which is also regulated by Akt (Ba), and 36 

further reinsertion (r4f). At physiological levels of insulin, most of the internalized 37 

receptors recycle to the plasma membrane 6. Therefore, the degradation of internalized 38 

receptors was not considered. The kinetic terms and the equations concerning insulin 39 

receptors are:  40 
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 41 

IRS1 (S1) 42 

There is evidence that the total amount of IRS1 protein is not changed by postprandial 43 

insulin stimulation 
7
. This allowed us to model only activation and deactivation processes 44 

of IRS1, and to use the fraction of activated IRS1 (S1a) as a variable in the model. 45 

 46 

IRS1 is activated (b0f) and deactivated (b0b) via tyrosine phosphorylation and 47 

dephosphorylation by the insulin receptor and phosphatases, respectively. The activity of 48 

IRS1 is also influenced by multiple downstream effectors in the insulin signaling network, 49 

such as Akt (Ba) and aPKC (Ca), which can phosphorylate multiple serine/threonine 50 

residuals on IRS1 8. Importantly, serine/threonine phosphorylation on IRS1 can either 51 

improve or impair signaling. As the positive feedback from Akt on the receptor has 52 

already been implemented, only negative effect from Akt is included here. For aPKC, we 53 

set up two parallel models where the effect of aPKC on IRS1 is positive and negative, 54 
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respectively. Numerical studies showed that only a negative effect from aPKC on IRS1 55 

could fit the data sets. The kinetic terms and equations for IRS1 read:   56 

a a
1 1a b0 0f p p,en i 0,p1 i 0,p2 1a 0b 1a

0,m1 0,m2

1a
b0

  ( ) H ( , ) H ( , )(1 )
C B

S S r b R R b b S b S
b b

dS
r

dt

= + − −

=

�

 57 

IRS2 (S2) 58 

Unlike IRS1, the total amount of IRS2 protein showed remarkable decrease after feeding 59 

due to transcriptional inhibition by Akt-FoxO 
7
. Consequently, the synthesis (c0f) of IRS2, 60 

which is regulated by Akt (Ba), is included in the model. The activation of IRS2 (c1f) is 61 

modeled by one kinetic term. Activated IRS2 (S2a) undergoes degradation (c2f). The 62 

kinetic terms and equations for IRS2 read 63 
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 64 

aPKC (C) 65 

There is evidence that the amount of aPKC in rodent liver is unchanged after feeding 66 

(Farese R. V. private communication). Therefore only the (de-)activation processes (d0f 67 

and d2f) are modeled and the fraction of activated aPKC (Ca) is used as a variable. aPKC 68 

is activated only by the IRS2 branch 9. The activation process requires IRS2/P13K 69 
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binding, (auto-)trans-phosphorylation and a conformational change (d1f) 
10,11

. The state 70 

before the conformational change is denoted by Ct. The kinetic terms and equations for 71 

aPKC read:  72 
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 74 

Akt (B) 75 

Akt is activated by both the IRS1 and IRS2 branches and is inhibited by aPKC. There is 76 

evidence that the total amount of Akt is kept constant during postprandial insulin 77 

stimulation 
7
. As in the case of IRS1, the activated fraction of Akt (Ba) is used as variable 78 

and only the activation (e0f) and deactivation (e0b) terms are present in the Akt equation. 79 

The kinetic terms and the equations for Akt read: 80 
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 81 

Estimation of rodent postprandial pre-hepatic insulin level  82 

Information on rodent pre-hepatic vein insulin levels is rare. We found two publications 83 

in which both plasma and pre-hepatic insulin level have been measured simultaneously 84 

12,13. The data are summarized in the following Table.  85 
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site  

condition 

plasma (pM) pre-hepatic  

base/peak (pM) 

fraction of 

pulsatile insulin 

12 hour fast  256 

 

200/630 60% 

0.5 hour after 

hyperglycemic clamp 

800 

 

900/4500 60% 

 86 

We assumed parabola relationships between plasma insulin level and the peak/base level 87 

of pre-hepatic pulsatile insulin. With those values from literature and the extrapolation 88 

limit point (0,0), we obtained the following relationships  89 
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 91 
where Iplas denotes plasma insulin level, Bhep,ins denotes basal level of pre-hepatic pulsatile 92 

insulin, Ahep,ins denotes the amplitude of pre-hepatic pulsatile insulin, Ihep,pul denotes 93 

pre-hepatic pulsatile insulin, P denotes the period of the pulses, Ihep,npul denotes 94 

pre-hepatic non-pulsatile insulin, which was used in the simulation of the feeding 95 

experiment. With above formulas, the fraction of pulsatile pre-hepatic insulin is in the 96 

range 60%-70%, which is consistent with reported values in the literature. Plasma insulin 97 

level was taken from 
7
 to build the insulin input for the refeeding experiment while 98 
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insulin levels for the infusion experiments was assumed to be the insulin level 1 hour 99 

after the beginning of feeding in the refeeding experiment.   100 

Simulation 101 

We fitted the model to the two data sets simultaneously. Specifically, in numerical 102 

optimization, we tried to minimize the root mean square (RMS) difference between 103 

model simulation (y) and the measured data points (ŷ),  104 
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where suffix r and i denote refeeding and infusion experiments respectively, σdenotes 106 

the standard deviation of the measured data point, and n denotes the number of data 107 

points.  108 

 109 

All the simulation work was done based on the SBPD toolbox for Matlab. The SBPD 110 

toolbox was modified in parts for our special purpose. A differential evolution based 111 

global optimizer was employed to fit the parameters in the model. We allowed a large 112 

parameter space for the fitting procedure to search. Each optimization task was repeated 113 

50 times. The optimizer returns a population of parameters that give rise to acceptable 114 

fitting results. We took not only the best fitting result for further analyses, but also those 115 

fitting results that are acceptable based on the Akaike information criterion with 116 

correction (AICc), with a relative likelihood of more than 0.37 (corresponding to 2 units 117 

difference in AICc). The definition of AICc reads 118 
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where P is the number of fitted parameters, N is the number of data points. 120 

 121 

We further made sure that the fitting results for analysis were well separated in terms of 122 

Euclidean distance, by filtering out inferior solutions (in terms of RMS) residing in the 123 

vicinity, defined by the relative distance filter (rDF) dr<0.1, of a superior one. In 124 

particular, the relative distance dr between two parameter vectors is defined as 125 
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where suffix i and j are index for parameter vectors with Vi being inferior in terms of 127 

RMS, k is the index for dimension within parameter vector, P is the number of dimension 128 

of parameter vectors (i.e. number of fitted parameters).  129 

 130 

We also investigated the response of the fitted model to variations in insulin levels and 131 

quantified the robustness to variations in insulin levels by the mean of AICc (mAICc), 132 

which is computed based on model responses to different insulin doses. The responses of 133 

the fitted model to 31 different insulin levels, linearly sampled in the range from 85% to 134 

115%, were used to calculate mAICc. Models, as well as fitting results, were finally 135 

ranked by mAICc. A relative likelihood of more than 0.37 (corresponding to 2 units 136 

difference in mAICc) is used in gating.  137 

Parameter identifiability analysis 138 

We performed parameter identifiability analysis based on the minimal model. 139 

Considering that measurements of IRS1/2 and Akt were present in the data sets used for 140 

fitting while no measurement of insulin receptor or aPKC is available, we carried out the 141 
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identifiability analysis for parameters directly involved in insulin receptor and aPKC. In 142 

particular, the parameter boundary [0.01 100], which was used in the previous fittings for 143 

determining the minimal model, was divided to four bins: [0.01 0.1], [0.1 1], [1 10] and 144 

[10 100] in order to generate diverse solutions. The model was fitted with one particular 145 

parameter being confined to one of the four bins while boundaries for other parameters 146 

were as before. Each fitting was repeated five times. This was done for eight parameters: 147 

r1f, r1b, r2f, r3f, r4f, d0f, d0b and d2f. For d1f which represents the rate of the conformational 148 

change of the partially activated aPKC molecule, the boundary [50 500] was divided into 149 

2 bins: [50 100] and [100 500] and corresponding optimization tasks were performed. 150 

Altogether, the identifiability analysis consists of 170 optimization tasks (8x4x5+2x5), 151 

the results of which were further analyzed in the following steps.  152 

At first, we checked insulin receptor dynamics. Previous in vitro experimental studies 153 

using metabolic active rat hepatocytes indicated that insulin receptor internalization and 154 

recycling can quickly follow physiological levels of insulin pulses 
14

. However, we have 155 

found that some of the fitted results were associated with slow receptor internalization 156 

and recycling such that insulin receptors cannot follow 5-min pulses of insulin (see an 157 

example in Supplementary Figure 7). These fitting results were excluded from further 158 

analysis.  159 

Secondly, we applied the AICc criteria, which resulted in 4396 acceptable parameter sets. 160 

Thirdly, we applied the relative distance filter, which reduce the number of parameter 161 

sets to 528. And finally, we applied the mAICc criteria, which resulted in 13 parameter 162 

sets. The distribution of each parameter after each step was presented in Supplementary 163 

Figure 2 (b) and (c).  164 
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In principle, the genetic algorithm we used converges to the global minimum when 165 

running time approaches infinity 15. However in practice, the algorithm has to be 166 

terminated by empirical rules. Consequently, the global minimum was likely not 167 

identified in our numerical studies.  168 

The identifiability analysis showed that 14 parameters were well confined in relative 169 

small ranges (both the ratio between the maximum and the median, and the ratio between 170 

the median and the minimum were smaller than two, see Supplementary Figure 1). The 171 

other 11 parameters were not well confined (at least one of the ratios was larger than two, 172 

see Supplementary Figure 1).  173 

Fitted Parameter values 174 

Fitted Parameter values are provided in Supplementary Data 1, including the 13 175 

parameter sets, as gated by mAICc, for M4 in the identifiability analysis. 176 

Matlab codes for generating main figures 177 

Matlab codes for generating main figures in both the main text and the Supplementary 178 

Information are provided in Supplementary Software 1.   179 

  180 
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Supplementary Figures  181 

Supplementary Figure 1. Distribution of fitted parameters in the 182 

minimal model  183 

Supplementary Figure 1 (a)  184 

 185 

  186 
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Supplementary Figure 1 (b) 187 

 188 

  189 
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Supplementary Figure 1 (c) 190 

 191 

Supplementary Figure 1 (a) Box and whisker plot for fitted parameters from the 192 

identifiability analysis. Each parameter is normalized such that the median value is 1 193 

(red). The upper and lower quartiles (p75 and p25) are marked by green. The range, from 194 

p25-1.5(p75-p25) to p75+1.5(p75-p25), is marked by blue. Mean ± standard deviation for each 195 

parameter are shown along the labels of the vertical axis. The x-axis is truncated at 20 to 196 

show more detail in the small range. The maximum of parameter r1b reaches 400. (b) and 197 

(c), distribution of parameters resulting from AICc, relative distance filter (rDF), and 198 

mAICc criterion in the identifiability analysis. Mean and median values are marked by 199 

red cross and green square respectively. (b) shows kinetic parameters, (c) shows 200 

parameters in various Hill functions.   201 



14 

Supplementary Figure 2. Multiple fitting results (related to Fig. 2 in the 202 

main text)  203 

 204 
Supplementary Figure 2 Multiple fitting results, coded by color, of the minimal model. 205 

The associated 13 parameter sets are included in the xls file in the supplement. 206 

Experimental data are indicated by black circles with error bars (s.e.m). The main 207 

difference is the timing of the aPKC switch.  208 

  209 
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Supplementary Figure 3 Multiple fitting results of M3 210 

 211 

Supplementary Figure 3, Two fitting result (green and blue), gated by mAICc, of M3.  212 

  213 
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Supplementary Figure 4. Model response to different insulin doses is 214 

robust (related to Fig. 4 in the main text) 215 

Supplementary Figure 4 (a)  216 

 217 

  218 
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Supplementary Figure 4 (b)  219 

 220 

  221 
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Supplementary Figure 4 (c) 222 

 223 

Supplementary Figure 4. Response of the minimal model, based on the 13 parameter sets 224 

resulting from the identifiability analysis, to different insulin doses are shown (a). The 225 

time of aPKC switch-off (b) and the level of Akt rebound (c) are also shown.  226 

  227 
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Supplementary Figure 5. Response to insulin profiles with different 228 

dynamic features (related to Fig. 5 in the main text) 229 

 230 

Supplementary Figure 5 (a) 231 

 232 
  233 
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Supplementary Figure 5 (b) 234 

 235 
  236 
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Supplementary Figure 5 (c) 237 

 238 
Supplementary Figure 5, The response of the minimal model to insulin profiles with 239 

different dynamical features. The time of aPKC switch-off (a), the level of Akt rebound 240 

(b) and the AUC of aPKC in first and second hour (c) are shown. 241 

  242 
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Supplementary Figure 6. Response to different pulsatile insulin 243 

(related to Fig. 6 in the main text) 244 

Supplementary Figure 6 (a) 245 

 246 

  247 
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Supplementary Figure 6 (b) 248 

 249 

Supplementary Figure 6 (a), Area under curve, corresponding to Fig. 6 in the main text, is 250 

compared for high and low amplitude of insulin pulses. The trend here is similar to 251 

Fig.5F in the main text. (b) Response of the model to pulsatile insulin with high and low 252 

amplitude. Multiple simulation results, coded by color, are shown. The associated 13 253 

parameter sets are included in the xls file in the supplement.  254 

  255 
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Supplementary Figure 7 Two patterns of insulin receptor dynamics 256 

 257 
Supplementary Figure 7 Example of the two patterns of insulin receptor dynamics in the 258 

simulation of infusion experiments. Although the two curves of insulin receptor (bottom 259 

row) are similar in the refeeding experiment (rightmost column), they are different in the 260 

infusion experiments. Insulin receptor can either follow insulin pulses (green curves, 261 

consistent with published experiments) or not (blue curves, contrary to published 262 

experiments). Parameter sets associated with the fast pattern of insulin dynamics were 263 

further analyzed.  264 

  265 
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