Assembling actin filaments for protrusion

Klemens Rottner1,2,* and Matthias Schaks1,2

1Zoological Institute, Braunschweig University of Technology, Spielmannstrasse 7, 38106 Braunschweig, Germany;
2Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany

*To whom correspondence should be addressed:
Phone: +49 531 391 3255
Fax: +49 531 391 3222
Email: k.rottner@tu-braunschweig.de
Cell migration entails a plethora of activities combining the productive exertion of protrusive and contractile forces to allow cells to push and squeeze themselves through cell clumps, interstitial tissues or tissue borders. All these activities require the generation and turnover of actin filaments that arrange into specific, subcellular structures. The most prominent structures mediating the protrusion at the leading edges of cells include lamellipodia and filopodia as well as plasma membrane blebs. Moreover, in cells migrating on planar substratum, mechanical support is being provided by an additional, more proximally located structure termed the lamella. Here, we systematically dissect the literature concerning the mechanisms driving actin filament nucleation and elongation in the best-studied protrusive structure, the lamellipodium. Recent work has shed light on open questions in lamellipodium protrusion, including the relative contributions of nucleation versus elongation to the assembly of both individual filaments and the lamellipodial network as a whole. However, much remains to be learned concerning the specificity and relevance of individual factors, their cooperation and their site-specific functions relative to the importance of global actin monomer and filament homeostasis.
Introduction

The discovery of actin expression in non-muscle cells in the middle of the last century ignited an ever-growing explosion of studies on how the cytoskeleton and in particular the acto-myosin system contributes to force development in migration and shape maintenance and change in non-muscle cells [1]. In spite of the relevance of microtubules for signalling and the regulation of cell morphology as well as their paramount contribution to neuronal architecture and growth, mesenchymal cell motility can occur without them [2]. In contrast, stability, maintenance and the vast majority of forward or rearward movements of the plasma membrane are not thinkable without the dynamic turnover of actin filaments. The rare but famous exceptions in eukaryotes include the MSP-mediated motility in nematode sperm [3] and the microtubule-based axopodia of Heliozoa protists [4], as well as in vertebrates the microtubule-mediated protrusions evoked by clostridial pathogens on infected epithelium [5].

The polar actin filaments in most cells of the animal kingdom are organizing into distinct subcellular domains, the most prominent of which are the actin cortex and plasma membrane protrusions such as lamellipodia, filopodia and blebs [6]. It is worth noting that all these terms originally coined decades ago based on morphological rather than functional or mechanistic features are increasingly drifting in meaning, as nicely summarized recently [7], but the structures discussed below exclusively refer to the canonical, actin-based versions of them.

Rapid turnover of filaments in vivo is driven by a process generally referred to as treadmilling, the various steps of which depend on differential on/off kinetics of ATP- versus ADP-bound actin on the two filament ends, and are regulated by a plethora of actin-binding proteins [8,9]. The treadmilling cycle is initiated by addition of assembly-competent ATP-actin monomers onto the rapidly-growing barbed ends of filaments, followed by fast ATP hydrolysis and slow Pi-release off monomers within the filament, and dissociation of the latter from filament pointed
ends. As final step, ADP-actin monomers are then “re-charged” for a new round of assembly with ATP.

A quarter of a century ago, the discovery of Arp2/3 complex as a novel nucleator of actin filaments certainly initiated a new era of actin research that keeps surprising us up till today [10,11]. Its binding to a so called mother filament followed by association of additional actin monomer generates a daughter filament branch, the molecular details of which are just beginning to be unravelled [12]. The biochemistry of actin branching [13] has early been supported by electron micrographs showing branched, dendritic actin networks in situ [14], which is continuing to be extended to various, subcellular Arp2/3-containing locations [15-17]. Indeed, the Arp2/3 complex is now established to operate in processes as diverse as migration, autophagy [18], myoblast fusion [19] and DNA double-strand break repair [20,21]. Despite this diversity, the generation of branched actin filament networks by the Arp2/3 complex can mechanistically explain its specific involvement in each of them. Yet, recent discoveries include the notion that the heteroheptameric Arp2/3 complex has to be considered as family of diverse complexes due to the usage of two alternative isoforms in case of three out of the seven subunits in humans [22]. Moreover, Arp2/3 complex-mediated branching is also exploited by various bacteria and viruses interacting with the actin cytoskeleton [17,23-25], and was the first type of motility reconstituted by purified proteins in vitro [26].

Aside from Arp2/3 complex, similarly exciting have been studies discovering and characterizing additional classes of actin filament nucleators [27], of which the formins are presumably most relevant for actin-based protrusion, as discussed here (see also [6]). As opposed to Arp2/3 complex, most formins are famous for their capability to processively elongate actin filaments from their barbed ends, thus being capable of generating and sensing piconewton forces at the single filament level [28,29]. However, we know today that processive elongation of actin filaments is not restricted to formins, as Ena/VASP family members, for instance, the accumulation of which coincides with the extent of lamellipodial actin
polymerization [30], can also exert this activity, although molecular details differ. More specifically, and distinct from formins that nucleate and elongate single actin filaments as dimers and in a fashion dependent on the small actin monomer binding protein profilin, essential features designating Ena/VASP-specific actin filament assembly combine filament bundling and actin monomer delivery onto filament barbed ends by multimeric family member arms [31,32]. This combination appears so fundamental that it has even been mimicked by pathogenic host actin regulators [33].

In spite of the progress on individual biochemical activities of all these actin assembly factors, little is known about their relative relevance in protrusion and migration. Here, we will review most recent progress in our understanding of how these molecules work together during protrusion of the lamellipodium, the best-characterized model structure of Arp2/3 complex-driven actin network formation in vivo.

The lamellipodium and related actin structures

For decades, research on cell migration is intimately linked to studying the activity and movement of the most prominent structure formed by cells at their fronts, at least when growing on comparably solid substrata in vivo, the lamellipodium: Due to being formed by various cell types and in multiple conditions [34,35], it is not surprising that this structure manifests with high diversity and size dimensions. The lamellipodium was originally defined mostly based on structural parameters, i.e. as a network of actin filaments protruding ahead of the more stable lamella behind [6,35]. However, we can now clearly extend this definition of the lamellipodium to the dynamic, actin-containing structure missing from the cell periphery if eliminating the function of the small GTPase Rac (isogenes 1, 2 and 3 in mammals) and its downstream effectors [36-42]. Figure 1 summarizes the most frequently studied types of actin-based protrusions at the plasma membrane of animal cells, e.g. during developmental processes or
essential activities of haematopoietic cells. We have refrained from including additional protrusion types, as induced for instance by bacterial or viral pathogens, as those have been covered in recent reviews [25,43]. The term ruffle today generally describes a lamellipodium-like structure potentially formed at two distinct subcellular locations in cells spread on two-dimensional surfaces. One type of structure corresponds to an up- or backwards-lifted lamellipodium at the cell periphery, and the second to a more complex structure known as circular dorsal ruffle (CDR), the closure of which co-incides with the formation of a macropinosome (Figure 1). The protrusion of lamellipodia and ruffles also coincides at least with the initiation of adherens junctions [44]. All those lamellipodia-like structures frequently display more bundled arrays that we call microspikes, which are to be separated as likely distinct in molecular regulation from filopodia that polymerize beyond the edges of lamellipodia or ruffles. Blebs are the only structures shown, the protrusion of which does not require active actin polymerization, but are formed instead by hydrostatic pressure at local actin cortex instabilities, and retracted by actin filaments polymerized inside the bleb subsequent to bleb expansion [45,46]. A consecutive inhibition and activation cycle of RhoA has recently been proposed to accompany the expansion and retraction phases during blebbing [47], but much remains to be learned concerning the details of their molecular regulation and the relation to other protrusion processes. Except for filopodia and blebs during their expansion, all these structures will employ Arp2/3 complex-mediated actin assembly to form, in spite of clear differences in relevance among distinct structures (see also below). Note that Arp2/3 complex activation in lamellipodia and ruffles is clearly dominated by WAVE regulatory complex (see also Box 1), whereas podosomes and invadopodia (invadosomes) are WASP/N-WASP-dependent [6]. In contrast, and although clearly involved, Arp2/3 complex displays a differential contribution to different types of phagocytosis [48]. Moreover, the literature harbours conflicting reports on the specificity of Arp2/3 complex activation during CDR formation [49,50]. Hence, the precise extent and mechanism of Arp2/3 complex activation in
CDRs or other actin-related structures such as the phagocytic cup [48] are yet to be established. At least as far known, specific formins and additional actin regulators are similarly broadly engaged in the formation of all these structures (see pathways in Figure 1 for best established examples). Below, we will dissect what’s known on how all these factors collaborate, as exemplified by the lamellipodium, but likely extendable to other structures comprising mixtures of networks and filament bundles such as the lamellipodium.

Relative contributions of Arp2/3 complex and other actin assembly factors

The Arp2/3 complex comprises two actin-related proteins, Arp2 and Arp3, which are structurally highly similar to actin and co-assemble with five additional, smaller subunits called ArpC1-5. Arp2 and Arp3 together with one or two additional actin monomers form a template for daughter branch generation, in which the complex remains attached to the slowly growing, so called pointed end of the actin filament, leaving the rapidly growing, barbed end free for rapid polymerization. Based on classical electron microscopy studies, all filaments in the lamellipodial network are positioned with their barbed ends facing forwards [51]. Arp2/3 complex is intrinsically inactive, but can most effectively be activated by so called class I nucleation promoting factors (NPFs) [52]. The C-termini of the latter harbour the following domains, an actin monomer-binding WH2-domain (also called W; in some proteins present as two or three copies), and Arp2/3 complex-binding connector (C) and acidic (A) regions that together make up the so called WCA-domain. Class I NPFs comprise a whole family of factors today, of which the heteropentameric WAVE complex (also WAVE regulatory complex, WRC, see Box 1 for details on its regulation) is the one relevant for lamellipodia formation [6]. Due to WRC accumulation at the plasma membrane, Arp2/3 complex activation and hence its continuous incorporation into the network occurs at the very front, at the membrane – network interface, just like actin [53,54]. In various cell types, formation of lamellipodia and membrane
ruffles and at least haptotactic, integrin-dependent cell migration is intimately linked to the presence of functional Arp2/3 complex [41,48,55]. This means that both initiation of such actin networks, but also their continuous protrusion and turnover require Arp2/3 complex activity in an obligatory fashion [56]. Not even formins capable of nucleating actin filaments in vitro and stimulated to accumulate at the plasma membrane can restore lamellipodia formation in cells unable to properly activate Arp2/3 complex [57].

One open question concerns the potential source of mother filaments for Arp2/3 complex-dependent branching in lamellipodia. In theory, branching can occur in principle from any actin filament, irrespective of how it was nucleated. For instance, both mammalian FMNL2 and mDia1 formins have previously been described to be able to generate filaments used for Arp2/3 complex-dependent branching in vitro [58,59]. However, their role as mother filament generators in lamellipodia is questionable, albeit for distinct reasons: In case of mDia1, no accumulation could be found at the tips of lamellipodia, which would positively correlate with the dynamics of other actin assembly factors driving this process, such as WRC [38,40]. The lack of such an enrichment was described by various labs and using distinct experimental approaches, ranging from live cell imaging of active, EGFP-tagged mDia1 in B16-F1 melanoma [60] and superresolution microscopy of immunostained, endogenous mDia1 [59] to careful registration of fluctuating mDia1 signals with edge protrusion and retraction movements [61]. Interestingly, the authors of the latter study found mDia1 accumulation before the onset of protrusion, which was interpreted as indicating potential generation of mother filaments before Arp2/3 complex-mediated branching is initiated. This conclusion was emphasized even further based on RNA interference data [59] and the proposal that mDia1 operates in this process in a non-redundant fashion [62]. However, we are convinced that the view of an essential function of mDia1 as upstream filament generator for Arp2/3 complex-dependent lamellipodia formation is incompatible with apparent lamellipodia formation in mDia1-deficient fibroblasts, and the engagement of mDia1 and its Dictyostelium homologue ForA into
protein complexes operating at the cell rear rather than front [60]. Aside from these considerations and due to continuous Arp2/3 complex activation [see above; 56], mother filament generation could be required, in principle, during all stages of lamellipodium protrusion, and not just during their initiation, as argued in case of mDia1 [62]. If correct, this would require lamellipodium tip accumulation of the proposed mother filament generator to fully coincide with protrusion, as is the case for FMNL2 and FMNL3 [57]. However, RNA interference or genetic removal of both members of this formin subfamily significantly decreased actin filament mass in lamellipodia without affecting the extent of lamellipodial Arp2/3 complex incorporation. This strongly suggesting these formins to generate filament populations acting in a fashion separable from the Arp2/3 complex-dependent actin network [57]. Interestingly, branching at the periphery of cells has been observed from filaments or filament bundles at both retractile edges or experimentally-induced cytoplasmic wounds [63], raising the question as to whether specific filament primers are even needed in vivo [64].

Together, as opposed to the undebated, essential role of Arp2/3 complex in lamellipodial protrusion, there is no unambiguous experimental evidence for an essential function of any additional nucleator/elongator in this or any other Arp2/3 complex-mediated process at present [6,26]. Instead, the precise relative functions of lamellipodial formins and Ena/VASP family members have been less clear for long, in particular if considering the wealth of information gathered from various different systems and experimental approaches over decades (for Ena/VASP compare [31,65,66]). Hence, systematic side-by-side analyses of the relative impact of functional interference with all these factors and in the same cell type, both individually and in combination, will be required to shed more light on such questions.

Single filament versus collective behaviour of the network
In traditional models of cooperation between Arp2/3 complex and actin filament elongators in lamellipodia, excellently reviewed in a comprehensive fashion a few years back [67], the intuitive view – at least at first glance - was that a balance between branching and elongation of filaments determines the persistence versus speed of lamellipodial protrusion. This means that a dominance of branching over elongation should reduce protrusion speed of lamellipodia, but increase their persistence, and vice versa if elongation dominates. At the structural level, this would coincide with high network density in the high branching regime, and low network density and thus reduced protrusion stability in the low branching and thus high elongation regime [67], as previously observed upon CAAX-box-mediated Ena/VASP targeting to plasma membranes [65]. This model works if assuming that the activity of a given actin assembly factor on individual actin filaments in vitro can be directly translated into its activity on a collective of barbed ends at lamellipodia tips in vivo, as proposed previously [58,67].

However, functional interference with lamellipodial formins FMNL2 and FMNL3, both of which drive nucleation and profilin-mediated, processive elongation of actin filaments in vitro, generated results that were fully compatible with their subcellular dynamics, regulation and activity [57], but inconsistent with aforementioned model. First, shifting the balance towards Arp2/3 complex-mediated branching by FMNL2 and -3 removal decreased actin network density instead of increasing it, and softened rather than stiffened these lamellipodia, at least if considering their force development measured by atomic force microscopy [57]. Moreover, in spite of decreased protrusion, rates of network polymerization were largely unchanged, which can only be explained by increased rearward flow rates of the more slowly protruding lamellipodia lacking FMNL2 and FMNL3. Importantly, recent mathematical modelling of all these activities and experimental conditions revealed that a reduction of lamellipodial heights caused by lowered actin filament densities upon FMNL2/3 removal can cause both reduced protrusion and increased flow rate, explaining largely unchanged actin assembly rates in these conditions [68]. These data thus call for a revision of our over-simplified views on how
polymerization of individual filaments embedded into lamellipodia affect the behaviour of the collective of filaments within the network, but they are not questioning the biochemical activities of the actin assembly factors measured \textit{in vitro} [31,57,58].

So what do FMNL formins do in lamellipodia? In our current view, FMNL2 and -3 displaying slightly differential activities concerning nucleation \textit{versus} elongation \textit{in vitro} [57], generate subsets of filaments in lamellipodia, optimizing their protrusion efficiency, extent of filament bundling and force development. This is also consistent with loss of function studies in more complex model systems, such as zebrafish and mice [69,70].

Notably, it is not fully understood how potential, differential polymerization of filaments within the lamellipodium network is homogenized, since the edge membrane usually protrudes forwards in a highly smooth and continuous fashion. However, the adaptability of lamellipodial actin networks has recently been highlighted by examining the relation of load and network structure [71]. Interestingly, branched actin networks were previously observed \textit{in vitro} to adapt to elevated resistance by increasing filament densities without changing the stoichiometry of their constituents, including Arp2/3 complex [72]. This force feedback mechanism occurred without changes in average filament lengths. It was based instead on an increase of both the number of growing filaments and their packing density, as opposed to an increase in branching activity per unit actin filament [72]. Fully consistent with this, the work by Mueller at al. now explains how the simple geometry of Arp2/3-dependent actin networks can enable such adaptation mechanisms \textit{in vivo} and thus tune lamellipodial protrusion in response to mechanical force [71]. In essence, an elevation of load will cause the protection of filaments from termination by heterodimeric capping protein [73] at increased ranges of angles relative to the edge membrane, culminating in an enhanced density of the Arp2/3-dependent network. Conversely, a load decrease will outcompete shallower over perpendicular filaments, thereby decreasing network density at increased protrusion speed [71]. Based on these results, it is tempting to speculate that potential differences in individual growth rates of filaments will be
suppressed or compensated for by such network-intrinsic, geometrical features. For instance, FMNL formins (and perhaps additional elongators) could both promote the nucleation of more orthogonal, lamellipodial filaments, as observed previously [57,74], and simultaneously protect the capping of shallower ones, increasing overall filament density by a factor of two [57]. However, these additional filaments cannot enhance the overall assembly rate of the lamellipodium, except perhaps if locally exceeding a critical number for protrusion of a filopodium (Figure 1). Rates of lamellipodial network polymerization might thus less directly be controlled by the inventory of actin polymerases residing at their tips than previously thought (see also below) [57,58,67,75]. Future work will have to experimentally validate such hypotheses.

Actin monomer to filament ratio and global versus local regulation

A recent surface structuration assay allowing the mimicry of lamellipodium protrusion with differential NPF patterning and concentration established the connection between Arp2/3-dependent network architecture or density and growth efficiency, and how these parameters may affect steering of the lamellipodium during cell migration [76]. The artificial, lamellipodia-like structures studied in this case are simplified, as their assembly is completely fed into rearward flow due to controlled nucleation of the network off substratum-coated NPFs, i.e. no bona-fide protrusion possible. However, in spite of the importance of high and homogeneous actin filament density for effective actin assembly, excess local NPF concentrations and thus branching activity reduced effective actin assembly simply by local actin monomer depletion [76]. It is conceivable that similar mechanisms are at play in cells to steer protrusions based on actin monomer availability and signalling-induced, local organization of actin networks driving migration, although the details remain to be established.
In general, regulation of actin assembly in cells at the level of actin monomers has been receiving increasing attention in the past few years [77]. The most-prominent actin monomer binding protein, profilin, is still a major focus, although exciting novel research indicates that one of its most popular functions, the re-charging of ADP-actin monomer with ATP, might equally well be taken over by cyclase-associated protein (CAP) [78]. For instance, profilin has been proposed as key regulator of Arp2/3-dependent versus –independent actin assembly pathways, because it can promote the latter while counteracting Arp2/3-dependent branching [79,80]. Inspired by these and other results, Kovar and colleagues formulated an actin network competition model truly centred on profilin as key determinant of a limiting pool of polymerizable actin monomer [81]. The molecular mechanism was proposed to reflect a simple competition for actin monomer between profilin and the W-domain(s) N-terminal to CA within class I NPFs [10]. Indeed, there is several indications for internetwork competition in the literature, as for instance in case of lamellipodia versus filopodia [56,82,83] or in case of epithelial cell polarization regulated by myosin II-dependent contractile bundles versus branched actin-networks [84]. In addition, we have recently found the protrusion and actin assembly rate of lamellipodia to be reduced by excess, ectopic polymerization of filaments in the cytoplasm [75], demonstrating that we can generate experimental scenarios in vivo that display monomer depletion as recently observed in vitro [76].

However, the simple inhibition of Arp2/3 complex by profilin has been challenged by a recent in vitro study that suggested that the proline-rich region N-terminal to WCA commonly present in class I NPFs [10,52,85] can alleviate this competition by passing on actin for efficient, WCA-mediated branching via proline-rich sequences (P) [86]. This exciting new study also showed that the PWCA-modules of class I NPFs can actually tether barbed ends and promote their elongation through both W-mediated actin and P-mediated profilin-actin recruitment, thereby acting as what was coined a “distributive network polymerase” [86]. To what extent profilin-dependent and –independent delivery of actin monomers to barbed ends at the lamellipodium
tip may be directly mediated by the class I NPF WRC (Box 1) versus additional actin polymerases residing at these sites [67] remains to be established (also see Figure 2).

In addition, profilin is not just an actin monomer binding protein, but has also been found to track the barbed end [87], potentially competing with various barbed end binders in the lamellipodium, including polymerases and capping protein. Based in part on these and additional results, Carlier and Shekhar have concluded actin turnover and differential actin array sizes in experimentally manipulated cells to derive from differential signalling rather than a finite pool of profilin-actin [88]. In their “global treadmilling model”, inhibition of Arp2/3 complex versus formin-mediated actin assembly has strong effects on the respective other network, without major changes of profilin-actin concentration. Careful future experiments in cells are required to distinguish between all these models.

Finally, actin monomer has recently been concluded to concentrate at lamellipodia tips [89], like in a sink towards accelerated actin polymerization, but leading edge targeting from cytosolic pools was proposed to be mediated by the monomer sequestrating factor thymosin β4 rather than profilin [90]. Clearly, future efforts will have to precisely determine the cellular concentrations of all species of polymerizable actin and how they interact with the multitude of factors recycling and employing them for effective and continuous, lamellipodial assembly (Figure 2).

Conclusions and future perspectives

In our current thinking, the actin assembly machineries operating in lamellipodia can be considered as role model for various, Arp2/3 complex-dependent structures formed in cells or during pathogenic processes. This holds true in particular for those structures operating at plasma membranes, such as pathogen-induced actin structures, phagocytic cups or CDRs driving micropinocytosis. Moreover, all this concerns principal mechanisms of tuning the
relative contributions of Arp2/3-dependent branching versus other mechanisms of nucleation and elongation, and regarding the potential regulation by actin monomer (see above). We consider the lamellipodium as branched actin network supported by filaments or filament bundles of Arp2/3-independent origin [57,74] that can be switched on and off by Rho GTPase-triggered signalling (Figure 1), and that is continuously turning over by assembly at the front and disassembly throughout the structure (Figure 2), as independently found in various model systems [54,67,89,91]. Although WRC/Arp2/3 complex-dependent branching is agreed to be indispensable for initiation and maintenance of this structure [6], the functions of additional players in the family of actin assembly factors are just beginning to emerge [57,67,68], including the relevance of profilin, profilin-bound actin and the precise nature in distinct tissues and cell types of the “re-charging” activity of ADP-actin monomers with ATP [78]. Moreover, we have refrained from emphasizing the relevance of coronin and members of the actin depolymerizing factor homology (ADF-H) family, including GMF, which have been excellently covered in recent reviews [92,93]. Notably, the relative relevance of all these factors in actin network remodelling and/or disassembly remains to be established. In addition, it will be challenging in the future to integrate currently conflicting observations into our model, such as rapid actin turnover (partially by actin oligomers) throughout the lamellipodium [94] or RhoA (and not Rac) as protrusion initiator [95].
Acknowledgements

We would like to thank all members of our lab for continuous and fruitful discussions, and the Deutsche Forschungsgemeinschaft for funding (GRK2223 to K.R.).

The authors declare no conflict of interest.
WAVE regulatory complex – an update on its regulation

Exciting recent research has uncovered some of the intricacies of regulation of heteropentameric WRC by its major activator in animals, the small GTPase Rac, and its implication for Arp2/3 complex-mediated lamellipodia formation in cells. It is commonly believed that WRC comprises 5 subunits, which operate as functional unit to drive Scar/WAVE-mediated Arp2/3 complex activation in different processes at the plasma membrane. In each tissue and organism, individual subunits (except for HSPC300) may be encoded by several isogenes that are assembled based on isogene expression. In mammals, the Rac interaction surface is encoded by Specifically Rac-associated protein 1 (Sra-1) or its isogene PIR121. In landmark research by the Rosen-group, it had originally been shown that interaction of Rac with Sra-1 causes relief of an inhibitory interaction of the WCA-domain of WAVE with WRC surfaces (in particular on Sra-1) [96]. More recent work then describing the structure of WRC-Rac1 complex as determined by cryo-electron microscopy, suggested a second binding site for Rac of even higher affinity, with the previously characterized site now called A site (for adjacent to the WCA-binding site), and the new site D site (for WCA-domain distant site) [97]. WRC was consequently proposed to be activated by simultaneous engagement of two Rac1 molecules, potentially endowing cells with the ability to sense the density of Rac1 signals for precise control of WRC-mediated actin assembly. In vivo work analysing cells exclusively harbouring WRCs lacking one of these binding sites or both of them revealed the situation to be more complex, with the formerly described, A site being established as the major activation site, and the second, high-affinity binding D site contributing to WRC-mediated actin assembly efficiency [38]. Interestingly, although the presence of either one of these sites is required for
WRC activation, they are crucial but not obligatory for recruitment of activated WRC, suggesting additional mechanisms of WRC accumulation in lamellipodia to be at play. In contrast, binding of WRC to previously defined WIRS (WRC interacting receptor sequence) peptides [98] is dispensable for this process [38]. Note, however, that aside from Rac, WRC positioning at the plasma membrane has been proposed to be mediated by multiple signals, including phosphatidylinositol (3,4,5)-trisphosphate (PIP3) binding to the basic domain of WAVE [99] or WRC binding to the lamellipodial actin assembly factor Lamellipodin (Lpd) [100]. The precise relevance of all these interactions is incompletely understood, as mutation of the PIP3-binding basic domain of Scar/WAVE in *Dictyostelium* generates a hyperactive Scar/WAVE variant rather than a compromised one [101], and as opposed to WRC, Lpd is not essential for embryonic development [100].
Figure Legends

Figure 1: Actin-dependent arrays of protrusion at the plasma membrane and essential signalling pathways that induce them. The majority of cell edge protrusions comprises branched actin filament networks (shown in red) formed by Arp2/3 complex, as in lamellipodia (1) or ruffles if lifting up- and backwards (2). Ruffling can also occur at the dorsal surface of cells growing on 2D-surfaces, which are then called circular dorsal ruffles coinciding with micropinocytosis (3). Additional branched actin structures are the phagocytic cups of haematopoietic cells (4), as well as the adherens junctions mediating cell-cell-contact in epithelial or endothelial cells (5). All these structures employ WAVE regulatory complex (WRC) as critical Arp2/3 complex activator, except for invadosomes (podosomes and invadopodia), which protrude at ventral cell surfaces of osteoclasts and macrophages (for details see text; 6). Filopodia are bundled structures (shown in green), and can either be found distally to lamellipodia or independently of the latter (7). The bundled, green structure embedded into the lamellipodium illustrates a microspike. If the actin cortex is ruptured (blue), the plasma membrane protrudes a bleb driven by hydrostatic pressure (8), which is subsequently retracted in an actin-dependent fashion (not shown). The process of dorsal ruffling and accompanied macropinocytosis is shown with two consecutive time points (t₀ and t₁), and dorsal and peripheral ruffles as well as invadosomes are shown as sagittal sections (dashed rectangles).

Figure 2: Lamellipodial actin network assembly and disassembly. Assembly of the lamellipodial actin network at the plasma membrane (top) is driven by the continuous branching activity of the Arp2/3 complex and elongation of branched and non-branched actin filaments by various polymerases. WAVE regulatory complex (WRC) continuously activates Arp2/3 complex at the lamellipodium tip, which is essential per definition for actin network assembly and maintenance. In addition, the C-terminus of WAVE and thus WRC as functional unit was
recently suggested to potentially also function in filament tethering (right, in the absence of sufficient actin or profilin-actin) and filament elongation (middle). This “distributive elongation activity” might occur both in a profilin-dependent and –independent fashion. FMNL formins also contribute to lamellipodial network density by nucleating filaments independently of Arp2/3 complex, and elongating them in a processive, profilin-dependent fashion. In analogy to formins, Ena/VASP proteins will also tether and elongate filaments in a processive manner, but as opposed to formins, processivity can occur with and without profilin. Capping protein stochastically terminates filament elongation and can travel rearwards with the network dependent on life time of capped filaments. This may be limited by disassembly and debranching of the network gradually increasing towards the rear of the lamellipodium, and effected by disassembly factors such as ADF/cofilin and debranching factors like coronin or GMF (for details see text).
References

treadmilling as well as for targeting of capping protein and coflin. *Molecular biology of the cell* 2013, 24:2861-2875.

97. Chen B, Chou HT, Brautigam CA, Xing W, Yang S, Henry L, Doolittle LK, Walz T, Rosen MK: **Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.** *Elife* 2017, **6**.

Papers of particular interest, published in the past 2 years, have been highlighted as:

- ● of special interest
- ●● of outstanding interest

Using clustered arrays of the Ena/VASP family member VASP and total internal reflection fluorescence (TIRF) imaging, the authors show how distinct VASP tetramers can collaborate to elongate individual actin filaments. In such clusters potentially reflecting the in vivo situation at sites of VASP accumulation, elongation rates are independent of the number of free actin monomer binding sites, whereas in solution they are.

Genetic deletion of the Arp2/3 complex subunit ArpC2 demonstrates integrin-dependent processes such as haptotaxis and complement-mediated phagocytosis (but not chemotaxis or FcR phagocytosis) to be severely compromised in macrophages lacking functional Arp2/3 complex.

Study precisely defining the role of Cdc42-effectors and lamellipodial formins FMNL2 and FMNL3 in protrusion and actin filament generation in lamellipodia. Both formins are responsible for generating and/or maintaining an Arp2/3 complex-independent population of actin filaments relevant for lamellipodial stability and force development.

Landmark paper showing for the first time how the geometry of lamellipodial actin networks mediates adaptation of these networks to differential loads: The molecular mechanism confirmed by mathematical modelling involves differential barbed end capping of filaments subtending the leading edge at distinct angles. High loads protect filaments with a broadened range of angles leading to high network densities, whereas low loads favour filaments towards perpendicular angles (at the expense of flat angles) leading to sparse networks.

Study showing that simple increase of actin polymerases (VASP or active formins) in the lamellipodium increases actin filament density but not protrusion. Moreover, different actin assembly factors differentially reduce protrusion dependent on the extent of induction of cytosolic actin assembly.

Study on reconstituted lamellipodium-like actin network demonstrating that local consumption of actin monomers *in vitro* can become rate limiting for local actin assembly rates of filaments and thus steer the direction of actin network growth. However, aside from monomer depletion, the direction of steering is additionally controlled by network architecture.

Exciting new story convincingly demonstrating by X-ray crystallography and biochemical analyses cells how the C-terminal CARP-domain of cyclase-associated protein (CAP) associates with the nucleotide sensing region of actin and induces re-charging of actin with ATP. In an attractive working model, dimeric CAP is handing over recharged, ATP-actin to profilin instead of the latter being the main driver of ADP-ATP nucleotide exchange. The relevance of CAP-catalyzed nucleotide exchange on actin monomers is also confirmed in yeast cells.

Carefully executed *in vitro* study illustrating how the C-termini of WASP family proteins (such as WAVE in the lamellipodium) could accelerate the rate of elongation of several filaments simultaneously (coined distributive polymerase activity). This new activity can occur through collaboration of the proline-rich and WH2 regions, and thus employ both profilin-actin and actin monomers.

Landmark paper describing the discovery of a second Rac binding site on the WRC subunit Sra-1, based on a new cryo-electron microscopy structure of WRC-Rac1 as well as biochemical and biophysical analyses.