Aurantimycin resistance genes contribute to survival of *Listeria monocytogenes* during life in the environment

Samuel Hauf¹, Jennifer Herrmann²,³, Marcus Miethke²,³, Johannes Gibhardt⁴, Fabian M. Commichau⁴, Rolf Müller²,³, Stephan Fuchs⁵, and Sven Halbedel¹,*

¹ FG11 Division of Enteropathogenic bacteria and *Legionella*, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany;
² Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany;
³ German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany;
⁴ Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany;
⁵ FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany;

* Corresponding author:
halbedels@rki.de, Robert Koch Institute, FG11 Division of Enteropathogenic bacteria and *Legionella*, Burgstrasse 37, D-38855 Wernigerode, Germany; phone: +49-30-18754-4323; fax: +49-30-18754-4207;

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/mmi.14205
This article is protected by copyright. All rights reserved.
Keywords: multi drug resistance, antimicrobial peptides, drug efflux, antibiotic resistance, depsipeptide

SUMMARY

Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multi drug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild type cells were not known. Using RNA-Seq and promoter-lacZ fusions we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.
INTRODUCTION

The Gram-positive bacterium *Listeria monocytogenes* is adapted to two entirely different ecological niches. It is ubiquitously found in nature, where it lives in the soil, on surfaces of plants and on decaying plant material (Freitag *et al.*, 2009), but it also invades epithelial cells of the human gut upon ingestion of contaminated food (Freitag *et al.*, 2009, Seveau *et al.*, 2007). Once inside a host cell, the bacterium multiplies, spreads from cell to cell and is able to breach the intestinal barrier to primarily infect the spleen, the liver or the brain of susceptible persons or the placenta and the fetus in pregnant women (Vazquez-Boland *et al.*, 2001). Such invasive disease manifestations are associated with high mortality (Ramaswamy *et al.*, 2007, Vazquez-Boland *et al.*, 2001).

On one hand, adaptation to life as a pathogen is reflected by the presence of virulence factors mediating attachment, invasion and multiplication inside host cells (Camejo *et al.*, 2011), survival in the gut (Travier *et al.*, 2013, Dussurget *et al.*, 2002) and their precise regulation (Lebreton & Cossart, 2017). On the other hand, the *L. monocytogenes* genome carries many genes for the uptake of different nutrients and for detoxification of various noxious compounds. This illustrates the constant struggle for survival of *L. monocytogenes* within the competitive and nutrient-limited environment outside the human host. For example, 30 complete phosphotransferase systems for the uptake of different sugars are present in the *L. monocytogenes* reference strain EGD-e (Barabote & Saier, 2005). Likewise, over 30 different ATP-binding cassette (ABC) transporters are encoded in the listerial genome (Liu *et al.*, 2013), serving different cellular functions such as nutrient uptake and antibiotic resistance (Fraser *et al.*, 2000, Gopal *et al.*, 2010).

Previously, we have identified the *L. monocytogenes* multidrug resistance (MDR) transporter...
LieAB (Kaval et al., 2015), which is annotated as a daunorubicin resistance ABC transporter based on its similarity to LmrCD from Lactococcus lactis. Like LmrCD, LieAB is a heterodimeric ABC transporter composed of a cytosolic ATPase (LieA) and a transmembrane protein (LieB). *L. lactis* cells lacking *lmrCD* are hypersensitive to daunorubicin, suggesting that daunorubicin is exported through LmrCD (Lubelski et al., 2006). Expression of the *lmrCD* genes is tightly repressed by the PadR-type transcriptional repressor LmrR and relieved in the presence of daunorubicin (Agustiandari et al., 2008). Daunorubicin binds to a hydrophobic pore in the center of the LmrR dimer and induces a conformational change that prevents LmrR binding to an operator element in the P_{lmrCD} promoter region and thus relieves transcriptional repression of *lmrCD* (Madoori et al., 2009, Agustiandari et al., 2011). Thus, LmrR and LmrCD cooperate in sensing and export of daunorubicin, thereby mediating resistance to the antibiotic.

In contrast, natural substrates of LieAB are not known but ethidium bromide has been described as an artificial substrate (Kaval et al., 2015). Overproduction of LieAB increases ethidium bromide sensitivity of *L. monocytogenes* in a way that requires the ATPase activity of LieA, indicating that LieAB acts as an ethidium bromide importer consuming ATP for import (Kaval et al., 2015). Why ATP should be invested to import such a harmful compound is not clear. It is also unlikely that *L. monocytogenes* comes in contact with synthetic compounds like this in nature; hence ethidium bromide is considered an unspecific side substrate of LieAB.

The lieAB operon is tightly repressed in wild type cells, but strongly induced in cells lacking the LmrR-homologue LftR, suggesting that LftR represses lieAB transcription (Kaval et al.,...
The $lftR$ gene is encoded together with $lftS$ in the bi-cistronic $lftRS$ operon. $lftS$ is supposed to be a soluble cytoplasmic protein containing a DUF1048 domain, the function of which is still not known. Tight $lieAB$ repression by $LftR$ seems to be beneficial during infection, since derepression of $lieAB$ in a $\Delta lftR$ mutant impairs invasion of host cells (Kaval et al., 2015). It is currently unclear how $LieAB$-dependent transport processes affect invasion, but other multidrug resistance transporters such as $MdtT$ are known to interfere with $L.\ monocytogenes$ virulence, when overproduced (Crimmins et al., 2008). $MdtT$ is one of several major facilitator superfamily (MFS) MDR transporters in $L.\ monocytogenes$ that collectively contribute to secretion of cyclic-di-AMP (c-di-AMP), a small molecule important for immune recognition through the cytosolic surveillance pathway in infected host cells (Woodward et al., 2010, Kaplan Zeevi et al., 2013). However, MFS type transporters do not rely on ATP hydrolysis for export (Van Bambeke et al., 2000) and sufficiently explain c-di-AMP secretion. Thus, a similar role for $LieAB$ in c-di-AMP export seems unlikely.

In this manuscript, we present a set of experiments that finally led to the identification of the first naturally occurring $LftR$ effector molecule and greatly improve our understanding of the $lftR$ and $lieAB$ genes in $L.\ monocytogenes$.

RESULTS

Identification of LftR-dependent genes by transcriptome sequencing

In order to better understand $LftR$ function, we first sought to identify all genes belonging to the $LftR$ regulon. Knowledge of the complete regulon enables a more targeted approach to gene function determination. $LftR$-regulated genes were identified by RNA-Seq with samples from wild type and the $\Delta lftR$ mutant LMKK42, constructed previously (Kaval et al., 2015), grown in BHI broth at 37°C to mid-exponential growth phase (OD_{600}~0.8). This approach confirmed massive de-repression of the $lieAB$ operon (~450-fold, Tab. 1) in strain LMKK42.
Transcription of the $lftS$ gene was also massively induced in this strain (~190-fold), supporting the idea that the $lftRS$ operon is auto-repressed by LftR. Virtually no $lieAB$ and $lftS$ transcripts were detected in wild type cells, indicating a strong LftR-dependent repression of the P_{lieAB} and P_{lftRS} promoters. The two genes located downstream of $lieAB$, i.e. $lmo0981$ encoding a putative efflux transporter and $lmo0982$ coding for a putative peptidase, are induced four to seven-fold in the $\Delta lftR$ mutant. The reason for this effect is unknown, but LftR could also repress expression of these two divergently transcribed genes. Finally, the $kdpDE$ genes coding for a two component system that controls expression of the *Escherichia coli* high affinity potassium uptake system $kdpABC$ (Polarek et al., 1992, Walderhaug et al., 1992) were two- to three-fold more transcribed in the absence of LftR. 16 genes were downregulated in the $\Delta lftR$ mutant, among them the $inlB$ and $inlH$ genes encoding internalins B and H and the $opuCA-D$ genes coding for an L-carnitine ABC transporter (Fraser et al., 2000) Remarkably, the 16 downregulated genes identified here are all members of the σ^B regulon (Tab. 1). This effect is explained by a C→T transition changing the 4th codon of $rsbT$ into a premature stop codon, which was uncovered by RNA sequencing and confirmed by sequencing of the LMKK42 genome. RsbT is part of the stressosome, a multiprotein complex that regulates σ^B activation due to environmental stimuli (Pane-Farre et al., 2005) and $rsbT$ inactivation causes a σ^B null phenotype in *L. monocytogenes* (Chaturongakul & Boor, 2004). It has been shown earlier that mutations in genes controlling σ^B activity can arise randomly during genetic manipulation of *L. monocytogenes* (Quereda et al., 2013).

Identification of LftR-dependent promoters

The repressive effect of LftR on the promoters of the $lieAB$ and $lftRS$ operons was further
studied using reporter gene experiments. Fragments encompassing putative promoter regions upstream of \(lftR\) (315 bp) or \(lieA\) (266 bp, Fig. 1A) as well as their respective start codons were fused in frame to \(lacZ\) and then integrated into wild type and the \(\Delta lftR\) \(rsbT^{A0C\rightarrow T}\) background of strain LMKK42. Both promoter fragments conferred high \(\beta\)-galactosidase activity to \(L.\ monocytogenes\) in the mutant background, where 3436±389 Miller units (MU) for \(P_{\text{lieAB}}-\text{lacZ}\) and 3313±218 MU for \(P_{\text{lftRS}}-\text{lacZ}\) were measured. In good agreement with LftR-dependent repression, activity of both promoter \(\text{lacZ}\) fusions was strongly repressed in wild type cells and in a \(\Delta\text{sigB}\) strain that we included as control to rule out the possibility that the \(\text{rsbT}^{A0C\rightarrow T}\) mutation could affect \(lftR\) or \(lieAB\) expression (Fig. 1B). Remarkably, activity of the \(P_{\text{lieAB}}\) fragment (14±3 MU) was close to the background values of 8±7 MU seen in strain LMSH16 that carries the promoter-less \(lacZ\) gene, whereas the promoter activity of the \(P_{\text{lftRS}}\) fragment was higher (32±15 MU, Fig. 1B). Thus, both promoters are tightly repressed by LftR in wildtype cells, but the \(lftRS\) promoter has a higher background activity. We speculate that this background level guarantees the required level of LftR production needed to maintain full repression of LftR-dependent promoters under non-inducing conditions.

In order to compare \(P_{\text{lieAB}}\) and \(P_{\text{lftRS}}\) promoter strengths with that of known housekeeping genes, promoter fragments of the \(L.\ monocytogenes\) \(gpsB\) (Rismondo et al., 2016) and \(\text{divIVA}\) genes (Halbedel et al., 2012) were fused to \(lacZ\) and \(\beta\)-galactosidase activity was measured in wild type background. The \(P_{\text{gpsB}}-\text{lacZ}\) and \(P_{\text{divIVA}}-\text{lacZ}\) fusions conferred LacZ activity levels of 900±107 MU and 982±121 MU, respectively, to the cells. Thus, derepression of the \(P_{\text{lieAB}}\) and \(P_{\text{lftRS}}\) promoters in the \(\Delta lftR\) \(rsbT^{A0C\rightarrow T}\) mutant results in three- to four-fold higher promoter activities.

Finally, de-repression of \(lftRS\) transcription in the absence of LftR was analyzed by Northern blotting. A probe specific for \(lftS\) detected a single ~700 nt transcript in wild type cells (Fig. 1C), consistent with \(lftRS\) forming a bicistronic operon, which was strongly induced in the
ΔlfTR rsbT^{ΔOC-T} background of strain LMKK42 (where its length was reduced due to lftR deletion). Importantly, a wild type like lftRS transcript was observed in the ΔsigB mutant (Fig. 1C). These results confirm the assertion that LftR autorepresses lftRS transcription.

Rhodamine dyes induce the LftR response

To identify compounds inducing the expression of the LftR regulon, LMSH5 (P_{lieAB}-lacZ) cells were poured into BHI agar plates containing X-Gal and compounds to be tested were spotted on top of these plates. No induction of the lieAB promoter was observed with several antibiotics (ampicillin, penicillin G, fosfomycin, bacitracin, cycloserin, erythromycin, chloramphenicol, kanamycin, tetracyclin, spectinomycin, nalidixic acid), antimicrobial compounds (benzalkonium, tert-butylhydroquinone, cravacrol, acriflavine) or dyes such as acridine orange. Likewise, no induction was observed with ethanol, DMSO, NaOH, EDTA, KCl, Triton X-100, SDS, deoxycholate or H$_2$O$_2$ (data not shown).

PadR-like transcriptional repressors are known to respond to daunorubicin and the fluorescent dye rhodamine 6G (Huillet et al., 2006, Crimmins et al., 2008, Madoori et al., 2009, Takeuchi et al., 2014). While daunorubicin did not induce the P_{lieAB} promoter (Fig. S1A), rhodamine 6G induced the P_{lieAB}-lacZ fusion, as a deep blue ring surrounding the zone of growth inhibition was observed (Fig. 2A). Another rhodamine dye, rhodamine B, also induced P_{lieAB}, but induction of P_{lieAB} by rhodamine B required higher concentrations, at least if judged based on the diameter of the induction zone that was violet in this case due to the color mixture of red (rhodamine B) and blue (Fig. 2A). The P_{lfRS} promoter showed the same induction profile, further indicating that the lftRS and lieAB operons are co-regulated. As expected, the control strain carrying a promoter-less lacZ gene (LMSH16) did not reveal any signs of β-galactosidase activity. Also, neither of the two promoters was induced by ethidium bromide (Fig. 2A), the previously identified artificial substrate of LieAB (Kaval et al., 2015).
A gradual induction of β-galactosidase activity in strain LMSH5 (P_{lieAB}-lacZ) was observed in the presence of increasing rhodamine 6G concentrations, which reached a 13.5-fold induction in the presence of 0.5 µg/ml (1.04 µM) rhodamine 6G (Fig. 2B), which is below the minimal inhibitory concentration of 2 µg/ml (see below). The same concentration induced the P_{lftRS}-lacZ fusion present in strain LMSH7 promoter 6.6-fold (Fig. 2B). Both promoters were only induced to 3.4% (P_{lieAB}) or 6.2% (P_{lftRS}) of their maximal capacity seen in the ΔlftR rsbT^{10C→T} mutant (Fig. 2B).

Isolation of a ΔlftR mutant free of unwanted second site mutations

Based on the experiments with the ΔsigB mutant and the clear-cut separation of transcriptionally deregulated genes in LMKK42 into down-regulated σ^B-dependent genes and LftR-dependent genes, which were strongly de-repressed, it seemed reasonable to assume that σ^B does not affect transcription of LftR-dependent genes. Nevertheless, we wondered whether the rsbT^{10C→T} mutation in the ΔlftR mutant LMKK42 occurred as a result of the ΔlftR deletion and massive overproduction of LieAB or whether it just arose by chance. In order to distinguish between these two possibilities, we repeated the mutant construction protocol. New clones lacking lftR were readily isolated and whole genome sequencing revealed the absence of unwanted second site mutations in four out of six isolated ΔlftR clones, suggesting that the rsbT^{10C→T} mutation in LMKK42 must have arisen by chance and is not needed to suppress an otherwise sick or even lethal ΔlftR phenotype. One of these new ΔlftR clones was designated LMSH26 and lieAB was deleted in this background, yielding strain LMSH35 (ΔlftR ΔlieAB). These two mutants were used in all further experiments.

Induction of the P_{lieAB} promoter requires LftS

The function of lftS, the second gene of the lftRS operon, is not known. The observation that lftS is co-regulated with the lftR and lieAB genes suggested that LftS could either act in LftR-
dependent gene repression or that it could be a component of the LieAB transporter. The latter possibility seemed unlikely, because a ΔlftRS mutant still showed increased susceptibility against ethidium bromide in a way that was dependent on the presence of lieAB, indicating that LftS does not contribute to LieAB function (Kaval et al., 2015). The remaining possibility, i.e. a possible role of LftS in LftR-dependent repression of the lieAB operon, was tested using a strain carrying the P\textit{lieAB}-lacZ reporter but lacking \textit{lftS} (LMSH27). While rhodamine 6G induces β-galactosidase in wild type strains carrying this reporter fusion, the P\textit{lieAB}-lacZ reporter in the Δ\textit{lftS} background was not induced by rhodamine 6G any more (Fig. 3A). This suggests that LftS is dispensable for lieAB repression but indispensable for relief of repression in the presence of rhodamine 6G.

Next, the \textit{lftS} gene was reintroduced at its original site in the Δ\textit{lftS} mutant. When the P\textit{lieAB}-\textit{lacZ} reporter was introduced into this revertant, rhodamine 6G induced the P\textit{lieAB} promoter again as in wild type bacteria (Fig. 3A), ruling out the possibility that the effect of \textit{lftS} was due to unwanted second site mutations.

Aurantimycin is a naturally occurring inducer of the LftR response

Rhodamines are of synthetic origin (Mudd et al., 2015), questioning their importance as inducers of the LftR response in natural environments. In order to identify naturally occurring compounds inducing lieAB expression, a compound collection containing ~700 natural products isolated from myxobacteria, actinobacteria and fungi was tested for β-galactosidase induction on strain LMSH5 (P\textit{lieAB}-lacZ). This yielded a single hit: Aurantimycin A (for its chemical structure see Fig. S2), a depsipeptide antibiotic isolated from \textit{Streptomyces aurantiacus} (Gräfe et al., 1995). A zone of growth inhibition was observed when a 1 µl droplet of a 1 mM aurantimycin A solution in DMSO was spotted on agar plates containing X-Gal and LMSH5 cells. This inhibition zone was surrounded by a clear blue ring indicating
induction of the \(P_{\text{lieAB}} \)-lacZ reporter (Fig. 3A), an observation not made with DMSO alone (data not shown).

Induction of the \(P_{\text{lieAB}} \) promoter by aurantimycin A was then tested during growth in BHI broth containing increasing but sub-inhibitory concentrations of aurantimycin A. This approach revealed gradual induction of \(\beta \)-galactosidase activity in strain LMSH5 (\(P_{\text{lieAB}} \)-lacZ) up to 657±117 MU at an aurantimycin A concentration of 100 ng/ml (≈0.12 µM) corresponding to a 36.5-fold induction compared to the absence of the inducer (Fig. 3B). Thus, the induction of the \(P_{\text{lieAB}} \) promoter by a molecule of aurantimycin A is approximately 24 times stronger than by a molecule of rhodamine 6G. Most likely, higher induction levels are prevented by the negative feedback loop that results from autorepression of the \(P_{\beta RS} \) promoter through LftR.

As observed for rhodamine 6G, induction of \(P_{\text{lieAB}} \) by aurantimycin was not detected in strain LMSH27 (\(\Delta lftS \) \(P_{\text{lieAB}} \)-lacZ) whether tested on plate (Fig. 3A) or during growth in broth (Fig. 3B). Furthermore, aurantimycin A did induce the \(P_{\text{lieAB}} \) promoter in the \(lftS \) revertant LMSH49 as it did in the wild type (Fig. 3A). Thus, LftS is required for \(P_{\text{lieAB}} \) induction by aurantimycin A in wild type cells. In contrast, \(P_{\text{lieAB}} \) was maximally de-repressed in cells lacking the entire \(lftRS \) operon (Fig. 3C), demonstrating that LftS only can exert its effect on de-repression of the \(P_{\text{lieAB}} \) promoter as long as LftR is present. This suggests that LftS potentially acts on or through LftR. Furthermore, LieAB does not influence \(P_{\text{lieAB}} \) induction by aurantimycin A (Fig. 3C), demonstrating that aurantimycin A sensing is LieAB-independent.

Evidence for LieAB-dependent aurantimycin A transport

We hypothesized that compounds inducing the LftR response are also transported outside the cell by LieAB. In order to test this hypothesis, minimal inhibitory concentrations (MIC) of

This article is protected by copyright. All rights reserved.
rhodamine 6G and aurantimycin A were determined. Growth of *L. monocytogenes* wild type cells was inhibited in the presence of 2 µg/ml rhodamine 6G and the same MIC was obtained with the ΔlieAB mutant (Tab. 2). Even in the absence of LftR, when LieAB is overproduced, no influence of LieAB on rhodamine 6G sensitivity was observed (Tab. 2), clearly indicating that rhodamine 6G is not a substrate of the LieAB transporter. Daunorubicin is also not a substrate of LieAB as resistance against daunorubicin was not affected in the ΔlftR (LMSH26) and ΔlftR ΔlieAB mutants (LMSH35, Fig. S1B).

The MIC of aurantimycin A against wild type was 1.25 µg/ml and two-fold higher (2.5 µg/ml) in the corrected ΔlftR mutant LMSH26, in good agreement with LieAB de-repression in this strain. In the absence of lieAB, the MIC of aurantimycin dropped to 0.156 µg/ml, whether LftR was present or not (Tab. 2). This shows that LieAB and LftR cooperate to mediate resistance of *L. monocytogenes* against aurantimycin A. LftS did not affect the MIC of aurantimycin A in this assay (Tab. 2), despite its relevance for P_lieAB induction (see above). However, ΔlftS cells showed longer lag phases to cope with aurantimycin A concentrations the wild type could quickly adapt to (Fig. 4). This late adaptation of the ΔlftS mutant to aurantimycin A was LieAB-dependent, as it was not observed in a ΔlftS ΔlieAB mutant (Fig. 4). To decide whether the late growth of the ΔlftS mutant at aurantimycin A concentrations between 156-625 mg/ml (Fig. 4) results from regulatory adaptation or from selection of aurantimycin A-resistant suppressors, we repeated this experiment and used wild type and ΔlftS cells grown in the presence of 625 ng/ml aurantimycin A to re-inoculate fresh culture medium containing increasing concentrations of aurantimycin A (Fig. S3). Surprisingly, both inoculums exhibited an increased aurantimycin A resistance after re-incoculation (Fig. S3). This indicates that both the wild type and the ΔlftS mutant had acquired inheritable aurantimycin A resistance through suppressor mutation(s). Remarkably, the MIC of these suppressors (2.5 mg/ml aurantimycin A, Fig. S3) was identical to that of the ΔlftR mutant.

This article is protected by copyright. All rights reserved.
(Tab. 2), suggesting that LftR may have been inactivated. These results confirm that LftS is required for de-repression of P_{lieAB} but also show that determination of aurantimycin A MICs (Tab. 2) is masked by formation of suppressors.

Next, we wondered whether aurantimycin A resistance is due to LieAB-dependent transport of aurantimycin A. As aurantimycin A has been described forming pores in artificial membranes, we studied its effect on $L.\ \text{monocytogenes}$ lysis by monitoring the optical density of bacterial cultures in Tris-buffer. These experiments revealed that aurantimycin A induces lysis of $L.\ \text{monocytogenes}$ wild type cells, which in turn would hardly lyse in plain buffer (Fig. 5). Similar lysis curves were observed with strains LMSH26 (ΔlftR) and LMSH35 ($\Delta\text{lftR}\ \Delta\text{lieAB}$) suggesting that LieAB does not confer protection against aurantimycin-induced lysis under this condition (Fig. 5). Since LieAB requires energy for transport, glucose was added as energy source. With energy available, lysis of the ΔlftR mutant was clearly diminished while this effect was abrogated in the $\Delta\text{lftR}\ \Delta\text{lieAB}$ double mutant (Fig. 5). This result indicates energy-dependent transport of aurantimycin in a LieAB-dependent manner.
DISCUSSION

We here show that LftR regulates a very specific set of *L. monocytogenes* genes. With *lieAB* and *lftRS*, there are only four main target genes of LftR (Fig. 6). These two operons are heavily overexpressed in the Δ*lftR* mutant. The induction values of the remaining five de-repressed genes found here are low and presumably represent unspecific side effects. The genes found to be downregulated in the Δ*lftR* mutant LMKK42 were all σ^B^-dependent due to a second site mutation in *rsbT*. This mutation most likely explains the daylight-dependent swarming phenotype that we observed earlier with this strain (Kaval *et al.*, 2015). Daylight-dependent coordination of swarming is known to be a σ^B^-dependent trait (Tiensuu *et al.*, 2013) and it was the only phenotype reported for this mutant that was not corrected by *lieAB* deletion (Kaval *et al.*, 2015). A new Δ*lftR* mutant without unwanted second site mutations was isolated and this mutant still showed de-repression of P_{lieAB} (Fig. 3B). These results confirm the LftR-dependence of the *lieAB* promoter and exclude the possibility that *lieAB* overexpression can only be observed in a *lftR* mutant when *rsbT* is mutated simultaneously. We can also exclude the possibility that the invasion defect observed with the first Δ*lftR* mutant (Kaval *et al.*, 2015) is explained by the *rsbT* mutation for two reasons: First, this phenotype was cured by deletion of *lieAB* and second, deletion of *lieAB* also cures the invasion defect of a *lftRS* double mutant, which was constructed independently and neither showed the σ^B^-dependent swarming phenotype (Kaval *et al.*, 2015) nor did contain any unwanted second site mutations (data not shown). The mechanism(s) explaining how LieAB overproduction affects the invasion process of *L. monocytogenes* into eukaryotic cells remain unknown. What now became clear is that these genes are rather expressed during life in the environment, where *L. monocytogenes* is exposed to aurantimycin A produced by streptomycetes also inhabiting the soil. Whether the *lieAB* genes are expressed during
infection at all, still needs to be studied, but this seems rather unlikely.

Aurantimycin A is composed of a cyclic hexadepsipeptide core fused to a lipophilic polyketide side chain (Gräfe et al., 1995) (Fig. S2). Its synthesis depends on a biosynthetic gene cluster with 36 open reading frames found in *S. aurantiacus* that encodes enzymes for precursor synthesis, several non-ribosomal peptide synthetase and polyketide synthase modules, putative tailoring enzymes and the ArtJK ABC transporter (Zhao et al., 2016). The most probable function of the ArtJK ABC transporter is to export aurantimycin from *S. aurantiacus* cells. ArtJK is remarkably similar to LieAB (54% identity between ArtJ and LieA and 44% identity between ArtK and LieB), which supports the idea that LieAB acts as an exporter for aurantimycin A. Particularly low MICs of aurantimycin A (0.007-0.08 µg/ml) have been reported for several Gram-positive bacteria, including *B. subtilis*, *Staphylococcus aureus* and streptococci, whereas Gram-negative bacteria are generally insensitive to aurantimycins (Gräfe et al., 1995). The LieAB transporter is clearly important for the considerably higher aurantimycin A resistance of *L. monocytogenes*. When *lieAB* is deleted, listerial aurantimycin A resistance drops down to almost the same level as in these other Gram-positive bacteria, suggesting the lack of similar aurantimycin A resistance mechanisms in these organisms.

Aurantimycin A was reported to increase the electrical conductivity through an artificial phospholipid membrane indicating that aurantimycin A could form membrane pores (Grigoriev et al., 1995), consistent with aurantimycin-induced lysis of *L. monocytogenes* cells (this study) and erythrocytes (Gräfe et al., 1995). However, this raises the question as to how LieAB would remove aurantimycin A from the membrane. How ABC transporters can export membrane-bound substrates is also not answered in better studied systems such as the BceAB ABC transporter of *B. subtilis* (Clemens et al., 2017), which contributes to detoxification of bacitracin (Ohki et al., 2003), but some evidence for direct expulsion from the membrane to
the outside through ABC transporters exists for other antimicrobial peptides such as epidermin (Otto et al., 1998). Another open question is to what extent aurantimycin A would accumulate inside the cytoplasm, where it could be sensed by LftR. The planar depsipeptide ring of aurantimycin A could be suited as an LftR substrate since the multidrug binding site in the homologous PadR-like repressor LmrR is a flat pore lined with hydrophobic amino acid side chains and also interacts with planar polycyclic compounds (Madoori et al., 2009). A direct interaction of LftR with aurantimycin A could then lead to relief of repression of the lieAB and lftRS operons through the induction of conformational changes in LftR (Fig. 6) as described for the interaction of LmrR with its ligands (Madoori et al., 2009). Induction of lieAB expression by aurantimycin A would lead to an accumulation of LieAB, and thereby to the export of aurantimycin A from the cell or its expulsion from the membrane so that ligand-free LftR could again act as a repressor (Fig. 6).

How LftS contributes to this process also remains unknown. LftS did not affect repression of the lieAB genes but is required for their inducer-dependent de-repression. The LftS protein (12.8 kDa) is entirely made up of a DUF1048 domain, a globular domain of unknown function that forms dimers in crystallo (PDB: 2O4T). Possibly, LftS acts in aurantimycin A sensing or in removal of LftR from its operator sites. Further studies, involving co-crystallization of LftR and/or LftS with or without aurantimycin A, are needed to clarify this and despite of the unsolved issues discussed, we have identified the first set of bacterial genes conferring and regulating resistance to aurantimycin A. We have to assume that the presence of these genes in L. monocytogenes reflects the frequent contact of this bacterium with competitors in the soil and contributes to survival of L. monocytogenes during life in the environment.
EXPERIMENTAL PROTOCOLS

Bacterial strains and growth conditions

All strains used in this study are listed in Table 3. *L. monocytogenes* strains were grown in BHI broth or on BHI agar plates at 37°C. Antibiotics and other supplements were used when required at the following concentrations: erythromycin (5 µg mL⁻¹), kanamycin (50 µg mL⁻¹) and X-Gal (100 µg mL⁻¹). Aurantimycin A was either included as test substance in the natural compound collection (see below) or purchased from Enzo Life Sciences (Lörrach, Germany). *Escherichia coli* TOP10 was used as the standard cloning host (Sambrook *et al.*, 1989).

General methods, manipulation of DNA and oligonucleotide primers

E. coli transformation and plasmid DNA isolation were performed using standard methods (Sambrook *et al.*, 1989). *L. monocytogenes* transformation was carried out as described elsewhere (Monk *et al.*, 2008). Enzymatic DNA manipulation was done in accordance with the manufacturer’s protocols. QuikChange mutagenesis was used for restriction free modification of plasmids (Zheng *et al.*, 2004). All oligonucleotide sequences are listed in Table 4.

Plasmid and strain construction

For construction of pBP117, plasmid pBP116 was constructed first. To this end, the *gltAB* promoter of *B. subtilis* 168 and the *lacZ* gene from pAC5 were amplified using oligonucleotides IW1/FC271 and FC269/FC270, respectively. The P_{gltAB} fragment was cut using EcoRI and the *lacZ* PCR product was digested with EcoRI/XhoI. Both fragments were simultaneously ligated to pIMK cut with EcoRI/XhoI. Blue colonies were isolated on LB plates containing kanamycin and X-Gal after transformation into *E. coli* XL1-blue. Plasmid
DNA was isolated from a blue colony, yielding pBP116. Plasmid pBP116 was then cut with EcoRI to remove the P_{gltAB} fragment and religated, yielding pBP117. Loss of the _gltAB_ promoter was confirmed by DNA sequencing.

For construction of the P_{lieAB}-lacZ fusion, the _lieAB_ promoter was amplified from chromosomal DNA with the oligonucleotides SAH88/SAH99. The obtained PCR product was used to insert the P_{lieAB} fragment into plasmid pBP117 by restriction free cloning (van den Ent & Löwe, 2006), resulting in plasmid pSAH10. Plasmid pSAH11, carrying a P_{gltRS}-lacZ fusion was constructed in the same way, but primers SAH79 and SAH100 were used instead.

The _gpsB_ and _divIVA_ promoters were amplified using the primer pairs SAH138/SAH139 and SAH140/SAH141, respectively, and the obtained PCR products were used as primers to introduce both promoter fragments into pBP117 by restriction free cloning. This procedure resulted in plasmids pSAH18 and pSAH19.

All derivatives of pBP117 were introduced into _L. monocytogenes_ by electroporation and kanamycin resistant clones were selected. Integration of plasmids into the chromosomal attB site of the tRNA^{Arg} locus was verified by PCR.

Plasmid pSAH13 was constructed for deletion of the _sigB_ gene. To this end, regions encompassing the _sigB_ gene were amplified using the primer pairs SAH101/SAH102 (upstream) and SAH107/SAH104 (downstream) and fused together by splicing by overlapping extension PCR (SOE PCR) with SAH101/SAH104 as the primers. The resulting fragment was cloned into pMAD using NcoI/EcoRI. For reintroduction of _lftS_ into the Δ_lftS_ mutant, a fragment containing _lftS_ was amplified with primers SAH193/SAH194 and inserted into pMAD using restriction free cloning. The resulting plasmid was named pSAH36. Derivatives of pMAD were introduced into the relevant strain backgrounds by electroporation and erythromycin resistant transformants were selected at 30°C. Allelic
exchanges were then performed using a protocol described by others (Arnaud et al., 2004) and verified by PCR.

Genome sequencing

Genomic DNA was isolated using the GenElute™ Bacterial Genomic DNA Kit (Sigma-Aldrich) as described (Halbedel et al., 2018). Libraries were prepared using the Nextera XT DNA Library Prep Kit and genomes were sequenced on a MiSeq benchtop sequencer as described recently (Rismondo et al., 2017). SNPs were identified using the Geneious software package and the EGD-e genome sequence (NC_003210.1) (Glaser et al., 2001) as the reference.

mRNA isolation

Strains were grown in BHI broth to an OD$_{600}$ of ~0.5 (mid exponential phase). 25 ml of this culture was collected and quenched by adding of 25 ml ice cold killing buffer (20 mM Tris-HCl pH 7.5, 5 mM MgCl$_2$, 20 mM NaN$_3$). After 5 min incubation on ice, cells were harvested by centrifugation.

RNA extraction followed the protocol of Gertz et al. (Gertz et al., 1999) with modifications. Cell pellets were resuspended in 1 ml Lysis Buffer I (25% sucrose; 20 mM Tris-HCl pH 8, 0.25 mM EDTA) and 2 µl of lysozyme (100 mg/ml) was added. After incubation for 5 min on ice, the samples were pelleted (15,000 x g for 30 s at 4°C) and resuspended in 300 µl Lysis Buffer II (3 mM EDTA, 200 mM NaCl). This solution was then mixed with 300 µl Lysis Buffer III (3 mM EDTA, 200 mM NaCl, 1% SDS) that had been pre-incubated at 95°C and the mixture was incubated at 95°C for five more minutes. 600 µl phenol/chloroform/isoamylalcohol (25:24:1) was added and vigorously mixed at room temperature for 5 min. Phases were separated by centrifugation (15,000 x g, 5 min), the
aqueous upper phase was collected and the phenol/chloroform extraction was repeated. Afterwards, the aqueous phase was mixed with 600 µl chloroform/isoamylalcohol (25:1), shaken vigorously for 5 min and phases were separated by centrifugation (5 min at 15,000 x g). The chloroform extraction was repeated. Finally, RNA was precipitated by addition of 0.1 x volume 3 M sodium acetate (pH 5.2) and 1.5 volumes 96% ethanol and incubation at -20°C overnight and pelleted by centrifugation (15,000 x g for 15 min at 4°C). The pellet was washed with 70% ethanol and resuspended in 100 µl DEPC treated water.

10 µg total RNA were digested with DNAse using the RNase-Free DNase Set (Qiagen). RNA was then purified using RNA clean & concentrator columns (Zymo Research) for purification for RNA molecules longer than 200 nucleotides. RNA quality was assessed using Agilent Bioanalyzer RNA Nano chips.

rRNA depletion was performed using the Ribo-Zero Bacteria Kit (Illumina) following the manufacturer’s instructions. A total of approximately 2 µg purified RNA was treatedd with 10 µl Ribo-ZeroRemoval Solution and RNA concentrations were determined using a Qubit® fluorometer. After rRNA removal the remaining RNA was pelleted by ethanol precipitation following the recommendations in the Ribo-Zero protocol.

RNA sequencing

RNA libraries were prepared using the TruSeq® Stranded mRNA Kit, starting with 19.5 µl Fragment, Prime, Finish Mix being added to the dried RNA pellet after rRNA depletion and ethanol precipitation. From this point on the manufacturers protocol was strictly followed. The RNA libraries were sequenced in paired-end mode with 2 times 76 cycles on the Illumina MiSeq (MiSeq® Reagent Kit v3; 150 cycles). RNA transcripts were quantified by quasi-mapping of the reads to the *L. monocytogenes* EGD-e cDNA, provided by the Ensembl Genomes server (Kersey et al., 2018), using the Salmon software (Patro et al., 2017).
Average expression from three biological replicates of the mutant divided by the average expression from three biological replicates of the wildtype gave the differential expression ratio. Log2-transformed transcript counts from three biological replicates were then used to calculate P values using Students t-test. Significantly differently expressed genes were defined as having a P-value less than 0.01 and an absolute differential expression factor of more than 2, as well as having an expression level of at least 10 TPM. RNA sequencing raw files are available at the NCBI Geo Server (https://www.ncbi.nlm.nih.gov/geo/) under study accession numbers GSE118775.

Northern blotting

Northern blotting was performed as described by Wetzstein et al. (Wetzstein et al., 1992). The \(\ell ftS \)-specific digoxigenin-labelled RNA probe was generated by in vitro transcription with T7 RNA polymerase (Roche Diagnostics) and an \(\ell ftS \)-internal PCR fragment fused to the T7 RNA polymerase recognition site, obtained using the primers SAH129/SAH130. In vitro transcription was performed with the DIG RNA labeling Kit (Roche). Hybridisation and signal detection were carried out using the DIG wash and block buffer set, an anti-digoxigenin antibody conjugated to alkaline phosphatase and the CDP-Star reagent (Roche) according to the manufacturer’s instructions.

β-galactosidase reporter assays

To screen substances for their induction of \(P_{\ell ftAR}-lacZ \) and \(P_{\ell ftRS}-lacZ \) in diffusion assays, an overnight culture of the respective reporter strain was diluted 1:1000 in 25 ml ice cold BHI broth containing 100 µg/ml X-Gal and then mixed with 25 ml warm BHI agar (1.5%). After solidification, 2 µl of the substances to be screened were spotted on the agar plates and incubated overnight at 37°C.
For determination of β-galactosidase activity, reporter strain cultures were grown in BHI broth until an OD_{600} of 0.5-0.6. Where indicated, aurantimycin A or rhodamine 6G were added to the cultures right from the beginning. Cells were pelleted, washed once with 500 µl H_{2}O and then resuspended in 1.2 ml Z-Buffer (60mM Na_{2}HPO_{4}, 40 mM NaH_{2}PO_{4}, 10mM KCl, 1 mM MgSO_{4}, 20 mM 2-mercaptoethanol). Cells were lysed by sonification and cellular debris was removed by centrifugation (12000 x g, 2 min). The resulting supernatant was used to measure protein content (Roti®-Nanoquant) and β-galactosidase activity. For β-galactosidase activity measurement sample were appropriately diluted in Z buffer to a final volume of 1000 µl and incubated at 30°C for 10 minutes. The reaction was started by addition of 200 µl ONPG (4 mg/ml in Z-Buffer) and stopped by adding 500 µl 1M Na_{2}CO_{3} as soon as the first sample turned clearly yellow. Absorption was measured at 420 nm against Z-Buffer incubated with ONPG as the blank and Miller units (MU) were calculated.

MIC determination

The determination of the minimal inhibitory concentration (MIC) was performed in 96-well plates in a total volume of 200 µl. Overnight cultures of the respective strains were used to inoculate 200 µl BHI containing defined concentrations of the antibiotic (geometric dilution series of the antibiotic of interest) at an OD_{600} of 0.05. The microtiter plates were incubated over night at 37°C and examined for growth after 18±2 hours. The MIC was defined as the lowest concentration of antibiotic at which no growth could be observed.

Natural compound collection

The natural compounds used in this study have been compiled as part of the German Centre for Infection Research (DZIF) infrastructure “Natural Compound Library” at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) in a ready-to-screen library. The
proprietary collection consists of secondary metabolites from myxobacteria, fungi, and streptomycetes, which were collected in natural product screening programs at HIPS, the Helmholtz Centre for Infection Research (HZI), and the University of Tübingen, respectively. At the time of screening, the library contained a total number of 681 purified natural compounds, in particular, 253 from myxobacteria, 340 from streptomycetes, and 88 from fungi. Library compounds were stored in DMSO at -80°C at a stock concentration of 10 mM and were transferred as 1 mM stock solutions in DMSO into conical 96-well plates using an automated liquid handling robot (STARlet; Hamilton Robotics, Bonaduz, Switzerland) in randomized order and encrypted by a barcode system for non-biased screening.

Lysis assay

An overnight culture was used to inoculate 20 ml fresh BHI at an OD \(_{600}\) of 0.05. This culture was grown until OD \(_{600}\)=0.5 and harvested by centrifugation. The cells were resuspended in 50 mM Tris pH 8.0 to obtain an OD \(_{600}\) of 2. 100 µl of this cell suspension were added to a microwell plate containing 100 µl 50 mM Tris pH 8.0 and 2 mg/ml aurantimycin A, where indicated. Optionally, 2.5 g/l glucose was added to this buffer to energize the cells. Lysis was monitored automatically by OD measurements in a plate reader at 5 minute intervals during incubation at 37°C.

ACKNOWLEDGEMENTS

This work was supported by intramural grants of the Robert Koch Institute (to SH), a DFG grant (to SH) as well as a DFG grant via the Priority Programme SPP1879 (to FMC), the Fonds der Chemischen Industrie (to FMC) and the Max-Buchner-Forschungsstiftung (MBFSt-Kennziffer 3381 to FMC). We are grateful to Andrea Thürmer and her colleagues (Robert Koch Institute, Berlin) for RNA and genome sequencing, to Viktoria Schmitt...
(HIPS/HZI Saarbrücken) and Timo Niedermeyer (Tübingen University) for help with compound library preparation and to Simone Dumschat and Birgitt Hahn for technical support. Funds for the "Natural Compound Library" are covered by grant TI05.002 of the German Center for Infection Research (DZIF) and compounds were kindly provided by DZIF partner sites Hannover - Braunschweig and Tübingen. None of the authors declares a conflict of interest.

AUTHOR CONTRIBUTIONS

All authors have made major contributions to the conception or design of the study, SaH, JH, MM, JG, SF, and SvH contributed to the acquisition, analysis, or interpretation of the data; SaH and SvH wrote the manuscript.

ABBREVIATED SUMMARY

Listeria monocytogenes is a soil bacterium that can infect humans upon ingestion. Numerous genes are known that are specifically expressed during infection, but less is known about genes important for survival in the soil. We identified the first genetic module regulating and mediating resistance against the depsipeptide antibiotic aurantimycin A. This substance is produced by *Streptomyces* species sharing the soil habitat. Consequently, these genes may support survival of an important human pathogen in its natural reservoir.
REFERENCES

Mujahid, S., R.H. Orsi, P. Vangay, K.J. Boor & M. Wiedmann, (2013) Refinement of the Listeria monocytogenes sigmaB regulon through quantitative proteomic analysis. Microbiology 159:

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

FIGURE LEGENDS

Figure 1: Effect of LftR on lieAB and lftRS promoter activity.

(A) Scheme illustrating promoter architecture of the lieAB and lftRS operons. (B) β-galactosidase activity assays in wild type and ΔlftR rsbT^{10C→T} and ΔsigB mutant backgrounds carrying P_{lieAB}-lacZ or P_{lftRS}-lacZ fusions. Strains LMSH5 (P_{lieAB}-lacZ), LMSH6 (ΔlftR rsbT^{10C→T} P_{lieAB}-lacZ), LMSH7 (P_{lftRS}-lacZ), LMSH8 (ΔlftR rsbT^{10C→T} P_{lftRS}-lacZ) were cultivated to exponential phase and β-galactosidase activity was measured. Average values and standard deviations are shown (n=3). *L. monocytogenes* strains EGD-e (wt), LMSH16 (lacZ), LMSH24 (ΔsigB P_{lieAB}-lacZ) and LMSH25 (ΔsigB P_{lftRS}-lacZ) were included for comparison. Significance levels (t-test) are indicated by asterisks (** *P*<0.01, *** *P*<0.001). (C) Northern blot showing derepression of lftS transcription in the ΔlftR rsbT^{10C→T} mutant (LMKK42). RNA samples from strains LMSH9 (ΔsigB), LMKK26 (ΔlftS) and LMKK31 (ΔlftRS) were included for comparison.

Figure 2: Induction of the lieAB and lftR promoters by rhodamine dyes.

(A) Agar plates showing induction of P_{lieAB}-lacZ and P_{lftRS}-lacZ promoter fusions by rhodamine B and rhodamine 6G. Strains LMSH5 (P_{lieAB}-lacZ) and LMSH7 (P_{lftRS}-lacZ) were poured into X-gal containing BHI agar and 2 µl droplets of rhodamine 6 G, rhodamine B or ethidium bromide solutions (all at a concentration of 2.5 mg/ml) were spotted onto the agar surface. Strain LMSH16 (lacZ) was included as negative control. Agar plates were
photographed after 24 h of incubation at 37°C. (B) Quantification of the induction of the
P_{lieAB}-lacZ and P_{lftRS}-lacZ promoter fusions by rhodamine 6G during growth in liquid culture.
Strains LMSH5 (P_{lieAB}-lacZ) and LMSH7 (P_{lftRS}-lacZ) were grown in BHI broth at 37°C
containing increasing concentrations of rhodamine 6G and LacZ activity was determined.
Strains LMSH6 (ΔlftR rsbT^{10C→T} P_{lieAB}-lacZ) and LMSH8 (ΔlftR rsbT^{10C→T} P_{lftRS}-lacZ) were
included for comparison. Measurements were repeated three times and average values and
standard deviations are shown. Significance levels (t-test) are indicated by asterisks (* -
P<0.01, ** - P<0.001).

Figure 3: Induction of the P_{lieAB} promoter by rhodamine 6G and aurantimycin A requires
LftS.

(A) Agar plates showing induction of the P_{lieAB} promoter by rhodamine 6G and aurantimycin
A. Strains LMSH5 (P_{lieAB}-lacZ), LMSH27 (ΔlftS P_{lieAB}-lacZ) and LMSH49 (lftS revertant P_{lieAB}-lacZ, designated lftS\(^{+}\)) were poured into X-gal containing BHI agar and
solidified. 2 µl droplets of a 2.5 mg/ml rhodamine 6G or 2.5 mg/ml aurantimycin A solutions
were spotted on top of the agar surface and images were taken after incubation at 37°C
overnight. (B) β-galactosidase activity in the same set of strains as above during growth in
BHI broth containing increasing concentrations of aurantimycin A. Measurements were
repeated three times and average values and standard deviations are shown. Significance
levels (t-test) are indicated by asterisks (* - P<0.01, ** - P<0.001). Strain LMSH34 (ΔlftR
P_{lieAB}-lacZ) devoid of the rsbT^{10C→T} mutation was included for comparison. (C) Induction of
the P_{lieAB}-lacZ reporter by aurantimycin A in in ΔlftRS and ΔlieAB mutants. β-galactosidase
activity was measured as described above in strains LMSH5 (P_{lieAB}-lacZ), LMSH27 (ΔlftS
P_{lieAB}-lacZ), LMSH64 (ΔlftRS P_{lieAB}-lacZ) and LMSH65 (ΔlieAB P_{lieAB}-lacZ). Average values
and standard deviations are shown (n=3).
Figure 4: Contribution of lftS and lieAB genes to growth in the presence of aurantimycin A.

Growth of *L. monocytogenes* strains EGD-e (wt), LMKK26 (ΔlftS), LMS160 (ΔlieAB) and LMSH66 (ΔlftS ΔlieAB) in the presence of different aurantimycin A concentrations after pre-adaption to aurantimycin A. For induction of lieAB expression, all strains were pre-grown in BHI broth containing a sub-inhibitory concentration of 100 ng/ml aurantimycin A to mid-exponential growth and then used to start cultures, the growth of which is shown here. The experiment was repeated three times and average values and standard deviations are shown.

Figure 5: Lysis of *L. monocytogenes* strains in the presence of aurantimycin A. *L. monocytogenes* strains EGD-e (wt), LMSH26 (ΔlftR) and LMSH35 (ΔlftR ΔlieAB), all devoid of the rsbT^10C→T^ mutation, were incubated in buffer and lysis was recorded over time in plain buffer, in the presence of 2 mg/ml aurantimycin A, or in the presence of 2 mg/ml aurantimycin A and 2.5 mg/ml glucose. All experiments were performed in triplicate and average values and standard deviations are shown.

Figure 6: LftRS function in *L. monocytogenes*.

(A) Repressed state. Basal transcription levels of lftRS ensure synthesis of LftR for repression of the lftRS and lieAB operons. (B) Induced state. Transcription of the lftRS and lieAB operons is induced in the presence of aurantimycin A. Induction requires LftS in a hitherto unknown manner. Massive synthesis of LieAB ABC transporter molecules leads to fast excretion of aurantimycin A out of the cell.

This article is protected by copyright. All rights reserved.
Table 1: *L. monocytogenes* genes deregulated in strain LMKK42 (ΔlftR rsbT^{10C→T})

<table>
<thead>
<tr>
<th>locus</th>
<th>function</th>
<th>fold induction</th>
<th>P value</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>upregulated genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lmo0979</td>
<td>lieA ABC transporter, ATP-binding protein</td>
<td>466±173</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>lmo0980</td>
<td>lieB ABC transporter, membrane component</td>
<td>454±138</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>lmo0720</td>
<td>lftS</td>
<td>187±32.1</td>
<td>3*10<sup>-7</sup></td>
<td></td>
</tr>
<tr>
<td>lmo0981</td>
<td>transporter</td>
<td>7.1±2.0</td>
<td>0.0065</td>
<td></td>
</tr>
<tr>
<td>lmo0982</td>
<td>peptidase</td>
<td>4.4±1.2</td>
<td>0.0071</td>
<td></td>
</tr>
<tr>
<td>lmo2678</td>
<td>kdpE response regulator</td>
<td>2.7±0.5</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>lmo2679</td>
<td>kdpD histidine kinase</td>
<td>2.7±0.4</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>downregulated genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lmo0434</td>
<td>inlB internalin</td>
<td>0.4±0.04</td>
<td>0.0071</td>
<td>(Oliver et al., 2009)</td>
</tr>
<tr>
<td>lmo0670</td>
<td>hypothetical protein</td>
<td>0.1±0.10</td>
<td>0.0062</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo1427</td>
<td>opuCB</td>
<td>0.1±0.03</td>
<td>0.0065</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo1425</td>
<td>opuCD</td>
<td>0.1±0.02</td>
<td>0.0021</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo1426</td>
<td>opuCC</td>
<td>0.1±0.01</td>
<td>0.0016</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo1428</td>
<td>opuCA</td>
<td>0.08±0.02</td>
<td>0.0041</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0669</td>
<td>putative oxidoreductase</td>
<td>0.08±0.03</td>
<td>0.0058</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0602</td>
<td>putative transcriptional regulator</td>
<td>0.07±0.02</td>
<td>0.0021</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo2748</td>
<td>hypothetical protein</td>
<td>0.07±0.01</td>
<td>0.0041</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0937</td>
<td>hypothetical protein</td>
<td>0.06±0.02</td>
<td>0.0093</td>
<td>(Oliver et al., 2009)</td>
</tr>
<tr>
<td>lmo2230</td>
<td>arsenate reductase</td>
<td>0.05±0.02</td>
<td>0.0095</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo2213</td>
<td>Isd-type haem degradation protein</td>
<td>0.04±0.02</td>
<td>0.0095</td>
<td>(Mujahid et al., 2013)</td>
</tr>
<tr>
<td>lmo0994</td>
<td>hypothetical protein</td>
<td>0.04±0.02</td>
<td>0.0083</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0263</td>
<td>inlH internalin</td>
<td>0.04±0.03</td>
<td>0.0089</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0596</td>
<td>hypothetical protein</td>
<td>0.04±0.01</td>
<td>0.0043</td>
<td>(Hain et al., 2008)</td>
</tr>
<tr>
<td>lmo0913</td>
<td>succinate semialdehyde dehydrogenase</td>
<td>0.03±0.02</td>
<td>0.0089</td>
<td>(Hain et al., 2008)</td>
</tr>
</tbody>
</table>

Table 2: MICs of *L. monocytogenes* mutants lacking *lftRS* and *lieAB* genes against rhodamine 6G and aurantimycin A.

<table>
<thead>
<tr>
<th>strain<sup>1</sup></th>
<th>genotype</th>
<th>rhodamine 6G [µg/ml]</th>
<th>aurantimycin A [µg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGD-e</td>
<td>wild type</td>
<td>2</td>
<td>1.25<sup>*</sup></td>
</tr>
<tr>
<td>LMKK26</td>
<td>ΔlftS</td>
<td>2</td>
<td>1.25<sup>*</sup></td>
</tr>
<tr>
<td>LMSH26</td>
<td>ΔlftR</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>LMS160</td>
<td>ΔlieAB</td>
<td>2</td>
<td>0.156</td>
</tr>
<tr>
<td>LMSH35</td>
<td>ΔlftR ΔlieAB</td>
<td>2</td>
<td>0.156</td>
</tr>
</tbody>
</table>

¹ The Δ*lftR* mutants used here do not contain the *rsbT^{10C→T}* mutation.

² Minimal inhibitory concentrations were determined three times and representative results are shown.

[*] These MICs are masked by suppressor formation. See text for details.
Table 3: Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>name</th>
<th>relevant characteristics</th>
<th>source/ reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC5</td>
<td>amyE lacZ cm `amyE</td>
<td>(Martin-Verstraete et al., 1992)</td>
</tr>
<tr>
<td>pMAD</td>
<td>bla erm bgAB</td>
<td>(Arnaud et al., 2004)</td>
</tr>
<tr>
<td>pMK</td>
<td>neo</td>
<td>(Monk et al., 2008)</td>
</tr>
<tr>
<td>pKK56</td>
<td>bla erm bgAB ΔlftR</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>pSH399</td>
<td>bla erm bgAB ΔlieAB</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>pBP116</td>
<td>P_gbab-lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pBP117</td>
<td>lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH10</td>
<td>P_lieAB-lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH11</td>
<td>P_lj挎-lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH13</td>
<td>bla erm bgAB ΔsigB</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH18</td>
<td>P_gbab-lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH19</td>
<td>P_divSVA-lacZ neo</td>
<td>this work</td>
</tr>
<tr>
<td>pSAH36</td>
<td>bla erm bgAB lftS</td>
<td>this work</td>
</tr>
<tr>
<td>B. subtilis strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>wild type</td>
<td>lab collection</td>
</tr>
<tr>
<td>L. monocytogenes strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGD-e</td>
<td>wild type, serovar 1/2a strain</td>
<td>lab collection</td>
</tr>
<tr>
<td>LMKK26</td>
<td>ΔlftS (lmo0720)</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>LMKK31</td>
<td>ΔlftRS (lmo0719-0720)</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>LMKK42</td>
<td>ΔlftR (lmo0719) rsbT10C→T</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>LMS160</td>
<td>ΔlieAB (lmo0979-lmo0980)</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>LMS168</td>
<td>ΔlftRS ΔlieAB</td>
<td>(Kaval et al., 2015)</td>
</tr>
<tr>
<td>LMSH5</td>
<td>attB::P_lieAB-lacZ neo</td>
<td>pSAH10→EGD-e</td>
</tr>
<tr>
<td>LMSH6</td>
<td>ΔlftR rsbT10C→T attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMKK42</td>
</tr>
<tr>
<td>LMSH7</td>
<td>attB::P_lj挎-lacZ neo</td>
<td>pSAH11→EGD-e</td>
</tr>
<tr>
<td>LMSH8</td>
<td>ΔlftR rsbT10C→T attB::P_lj挎-lacZ neo</td>
<td>pSAH11→LMKK42</td>
</tr>
<tr>
<td>LMSH9</td>
<td>ΔsigB (lmo0895)</td>
<td>pSAH13→EGD-e</td>
</tr>
<tr>
<td>LMSH16</td>
<td>attB::lacZneo</td>
<td>BP117→EGD-e</td>
</tr>
<tr>
<td>LMSH17</td>
<td>attB::P_gbab-lacZ neo</td>
<td>pSAH18→EGD-e</td>
</tr>
<tr>
<td>LMSH18</td>
<td>attB::P_divSVA-lacZneo</td>
<td>pSAH19→EGD-e</td>
</tr>
<tr>
<td>LMSH24</td>
<td>ΔsigB attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMSH9</td>
</tr>
<tr>
<td>LMSH25</td>
<td>ΔsigB attB::P_lj挎-lacZ neo</td>
<td>pSAH11→LMSH9</td>
</tr>
<tr>
<td>LMSH26</td>
<td>ΔlftR (lmo0719)</td>
<td>pKK56→EGD-e</td>
</tr>
<tr>
<td>LMSH27</td>
<td>ΔlftS attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMKK26</td>
</tr>
<tr>
<td>LMSH34</td>
<td>ΔlftR attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMSH26</td>
</tr>
<tr>
<td>LMSH35</td>
<td>ΔlftR ΔlieAB</td>
<td>pSH399→LMSH26</td>
</tr>
<tr>
<td>LMSH43</td>
<td>lftS revertant</td>
<td>pSH36→LMKK26</td>
</tr>
<tr>
<td>LMSH49</td>
<td>lftS revertant attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMSH43</td>
</tr>
<tr>
<td>LMSH64</td>
<td>ΔlftRS attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMKK31</td>
</tr>
<tr>
<td>LMSH65</td>
<td>ΔlieAB attB::P_lieAB-lacZ neo</td>
<td>pSAH10→LMS160</td>
</tr>
<tr>
<td>LMSH66</td>
<td>ΔlftS ΔlieAB</td>
<td>pSH399→LMKK26</td>
</tr>
</tbody>
</table>
Table 4: Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>name</th>
<th>sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC269</td>
<td>AAAGAATTCGGTCACTGATTCTGACGGGTGAGTTGACAGGAAAACCTGCCC</td>
</tr>
<tr>
<td>FC270</td>
<td>TTCTCAGAACAGTTAGTTCTACCGGAATACGGAGGACACATGCTGCCC</td>
</tr>
<tr>
<td>FC271</td>
<td>TTGATCTCTGAGCTTCTGATGTTGAGCGTACATCATAATTCC</td>
</tr>
<tr>
<td>IW1</td>
<td>AAAGAATTCGGTCACTGATTCTGAAACCTTG</td>
</tr>
<tr>
<td>SAH79</td>
<td>AGAATCTAGTGGATCCCCAGCTAAATCTTGTGAGAAGATGCC</td>
</tr>
<tr>
<td>SAH88</td>
<td>GCTCTAGAAGTAGTGATCCCTCGATGAAATTTGTTGATTC</td>
</tr>
<tr>
<td>SAH99</td>
<td>GTTGAAAGAGGGAGGATTTCCATTGAAATACCAACCTCTTCTTCC</td>
</tr>
<tr>
<td>SAH100</td>
<td>AGAATCTAGTGGATCCCCAGCTAAATCTTGTGAGAAGATGCC</td>
</tr>
<tr>
<td>SAH101</td>
<td>CACATGGGTGCCATGCTGTGTTGAGCGTACATCATAATTCC</td>
</tr>
<tr>
<td>SAH102</td>
<td>GATTAACACTGCTTGTCAATTTAATCAGGTTGAGATTCTTTTGGCATTCA</td>
</tr>
<tr>
<td>SAH104</td>
<td>CGCTCAGAAGCTCTTTTGGCAATCCCAAACCTGATTGGAGAAGTGGAGATAATGAAACAG</td>
</tr>
<tr>
<td>SAH107</td>
<td>GAATGCCAAAGTAGAATCTCACAACCTGATGAGGAAAGTGGAGATAATGAAACAG</td>
</tr>
<tr>
<td>SAH129</td>
<td>AAAGAATAGCCGCCTTGGC</td>
</tr>
<tr>
<td>SAH130</td>
<td>CTAATACGAATGATCCCGATGTGACGATCTCTGACGTTG</td>
</tr>
<tr>
<td>SAH138</td>
<td>CTAATACGATCTGATCCCGATGTGACGATCTCTGACGTTG</td>
</tr>
<tr>
<td>SAH139</td>
<td>GTAAAAGCAACGGGAGATTTCCATTATAAACCCTCTTATCTTCT</td>
</tr>
<tr>
<td>SAH140</td>
<td>CTAATACGATCTGATCCCGATGTGACGATCTCTGACGTTG</td>
</tr>
<tr>
<td>SAH141</td>
<td>GTAAAAGCAACGGGAGATTTCCATTATAAACCCTCTTATCTTCT</td>
</tr>
<tr>
<td>SAH193</td>
<td>CTAATACGATCTGATCCCGATGTGACGATCTCTGACGTAAGAAGCAC</td>
</tr>
<tr>
<td>SAH194</td>
<td>CTACAAAGATCACCCAGGTGACGATCTCTGACGTAAGAAGCAC</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.
A

<table>
<thead>
<tr>
<th>Ligand</th>
<th>P_{lacAB-lacZ}</th>
<th>P_{lacI-lacZ}</th>
<th>lacZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhodamine 6G</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>rhodamine B</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>ethidiumbromide</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

B

[Graph showing β-galactosidase activity vs. rhodamine 6G concentration]

Hauf et al., Figure 2

This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.
Hauf et al., Figure 5

This article is protected by copyright. All rights reserved.