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Mammals co-exist with resident microbial ecosystem that ifomposed of an incredible
number and diversity of bacteria, viruses and fungi. Owingotdirect contact between
resident microbes and mucosal surfaces, both parties are icontinuous and complex
interactions resulting in important functional consequetes. These interactions govern
immune homeostasis, host response to infection, vaccinatn and cancer, as well
as predisposition to metabolic, in ammatory and neurologial disorders. Here, we
discuss recent studies on direct and indirect effects of reislent microbiota on
regulatory T cells (Jegs) and Th17 cells at the cellular and molecular level. We
review mechanisms by which commensal microbes in uence muosa in the context
of bioactive molecules derived from resident bacteria, immme senescence, chronic
inammation and cancer. Lastly, we discuss potential therpeutic applications of
microbiota alterations and microbial derivatives, for inmpving resilience of mucosal
immunity and combating immunopathology.
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INTRODUCTION

Mammals harbor a highly diverse microbiome of at least 100@ispeand an astounding number
of 10-100 trillion microbial cells, co-existing in a remalie balance with the host immune
system. Healthy human microbiome is mostly bacteria alftoother microbial domains such as
archaea, viruses, and eukaryotes (principally fungi and ps)tete also preseni), While these
microbes are distributed in skin, and mucosa of ocular, hawal, eye, and reproductive organs,
gastrointestinal (GI) tract mucosa is the major reservéiesident microbes in terms of abundance
and species diversity(3). The human colon harbors approximately 3.810' microorganisms,
followed by skin in the range of 1011(4). Since the resurgence of microbiome research in recent
years, there has been a sharp increase in understanding wfrésident microbiome shapes
immunity, health and disease of humans. Only a perennialdaglion a lonely island could excuse
an immunologist's incognizance on intimate interrelatghips between intestinal microbiota and
immune balance. Direct crosstalk between resident micsadoed host immune cells in mucosa
emerges as a pivotal determinant of such an immune balancsbiBsis of resident microbes
has strong association with a number of immunological digwsj including opportunistic and
pathogenic infections¥-13).
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Mucosal immune system has not only evolved to protect tha@on-suppressive functions of Foxpzells are largely variable,
mucosal barrier surface against external insults, it has ab- depending on local tissues, disease phenotypes, responding
evolved with resident microbes in an interdependent harnooisi e ector cells, and cytokine milieuw—49).
relationship with them {4-21). The resulting immune balance ~ While CD4 e ector T cell responses contribute to overt
is crucial to drive optimal immune responses without causingntestinal in ammation, Tegs are associated with controlling
an over-exuberant in ammation42-25). Past few decades haveimmunopathology {2, 43, 50). It is well known that Tegs are
seen that an increase in hyper-hygiene mentality, mindlesofi  also pivotal for commensal tolerancgl{-53). There have been
antibiotics and diet changes, have led to reduced divemity contentions regarding the dgs found in colon mucosa (colon
impaired resilience in resident microbiot2). Consequently, Tregs CTregd; Whether they develop in thymus (thymicrehs
a disruption in aforementioned immune balance leads tdTyeq9, or periphery (peripheral kgs pTregd. The usage of Nrp-1
rise in autoimmune and in ammatory disorders. Therefore, and Helios as markers of {dgs and the extent to which the TCR
understanding the mechanisms of these mutualistic relatigps  repertoire of cTeg Overlaps with that of tJegshave been debated
between resident microbiota and di erent components of inmat (54, 55). Nevertheless, it is well established thakgdrequire the
and adaptive immunity is vital to our understanding of immune presence of microbiota for their development, sustenance and
diseases. Although gut microbiota in laboratory mice andunction (56-58). There is also evidence that mucosal sites are
humans dier signi cantly, murine models have provided a the primary sites of development and maintenance ogg(59-
powerful tool to explore host-microbiota-pathogen interacts  61). First formal proof for the requirement of microbiota for ¢h
in mucosa 7, 28). Here we review the e ects of resident induction and maintenance of intestinal.ehs was provided by
microbiota on Tegs and Th17 cells, important players in studies using germ-free (GF) animal models. GF mice show a
determining immune balance, mucosal barrier integrity diut ~ several-fold reduction in the frequency of HelioJ eqs when
protective functions in mucosa. These cells mucosa canaegvelcompared with conventionally housed specic pathogen free
in mucosa independent of commensal microbiota. For exampl€SPF) mice. Association of individual bacterial isolatedeoned
there is evidence in germ free mice thaggcells can be induced consortia in GF mice is su cient to induce intestinal /dgs
by dietary antigens from solid food2§). These Teq cells are (56, 57). Even antibiotic treated mice, which show depletion in
of limited life span, but are distinguishable from microtaet resident microbiota correlating with a drastic reductiom the
induced Teg cells and capable of repressing inadvertentimmunédrequency of Tegs lend further credence to the positive role
responses to ingested protein antigens. Similarly, in oratesa, of microbiota in sustenance of dgs (53, 55 62). In addition
mechanical damage from mastication of food induces barrieto commensal tolerance, mucosaleds have been shown to
protective Th17 cells, independent of oral commensal miotzbi regulate excessive immune responses during infectiégsE-
under homeostatic conditions3(). However, dysbiosis can lead 65). Recently, they are also shown to accumulate in other
excessive Th1l7 cells and lead to periodontal in ammatidf).( tissues and provide functions such as non-suppressive tissue
Thus, while it is known that these cells can develop indepehde repair functions in muscle6). While Tegs play diverse and
of microbiota, resident bacterial dysbiosis is stronglyoagated often opposite roles in mucosal infectionaple 1), e ects of
with alterations in these cells, causing mucosal in ammati microbiome on Tegsduring these infections are largely ignored
seen in many diseases including HIV immunopathogenesis ( in many studies.

41). Although other cells also play important roles in mucosal Th17 cells are ROR®, CCR&, IL-17AC, IL-17F°, with
tolerance and immunity, we will not review them here. some cells expressing IL-21 and IL-22, and have been imglicate
both in mucosal barrier functions. Th17 cells are an important
subset of e ector T cells that are protective during extradatu
Tregcs AND TH17 CELLS IN MUCOSA bacterial and fungal invasior8g 88-91). However, excessive
UNDER STEADY STATE-CONDITIONS Th17 responses are also associated with a variety of patlwogeni
conditions, depending on the pro-in ammatory cytokines they
Majority of the studies on mucosa-microbiota interactionsco-produce 80, 91-95). Littman and colleagues showed for the
discuss Gl tract. Indeed, Gl mucosa harbors by far the largegst time that commensal microbiota play important roles in
and most diverse microbiota, as well as abundant and dynamitie development of intestinal Th17 cell32( 53, 96-100. Th17
population of Tegs and Thl7 cells. [kgs are dened by development and dierentiation is controlled by cytokine and
the expression of CD25 and Foxp3, and are predominantlgpigenetic regulation9(, 92, 101, 102, but the mechanistic
known for their immunosuppressive properties. These cellgletails of microbiome dependent control of Th17 development
also express other molecules such as Cytotoxic T Lymphocytieiring mucosal infection is largely unclear.
Antigen-4 (CTLA-4), PD-1, interleukin 10 (IL-10), transfaing

growth factor beta 1(TGMB1), and amphiregulin. Each of
the aforementioned proteins has been shown to be eithelrMPACT OF MICROBIOME ON T regs AND

important, or dispensable for dierent mechanisms ofef TH17 CELLS DURING GI INFECTION AND
mediated immunosuppression. Divergent conclusions deriveNFLAMMATION

from various Teg mechanism investigations have been strikingly

similar to those in the popular parable of the “Blind men and“Healthy” Gl microbiota is mainly composed of the phyla
an elephant.” It is now increasingly clear that suppressive andctinobacteria, Bacteroidetes, Firmicutes, Fusobagteri
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TABLE 1 | FoxpscTreg functions in mucosal infections.

Pathogen T reg manipulation Qutcome
BACTERIA
Listeria monocytogenes Tregs cause increased pathogen burden §7) Detrimental
Salmonella enterica Foxp3C cell ablation accelerates bacterial clearancesg) Detrimental
Aggregatibacter actinomycetemcomitans Tregs attenuate experimental periodontitis progressiong©) Protective
Yersinia Enterocolitica Tregs reduce pathogenic burden and attenuate in ammation {0) Protective
VIRUSES
HIV Early interference with the eg's suppressive function worsened infection and in ammation(71, 72) Protective
Tregs are preserved in elite controllers in humans’@) Protective
Tregs suppress anti-viral CD8 responses{4) Detrimental
Foxp3C cell ablation accelerates mortality and increases viraldd (197) Protective
Herpes simplex virus 2 Foxp& cell ablation increases mortality {5) Protective
West Nile virus
PARASITES
Toxoplasma gondii Loss of Foxp3C Treg cells results in fatal pathology{6) Protective
Toxoplasma gondii Loss of Foxp3C Treg cells results in pathology {7) Protective
Toxoplasma gondii Loss of Foxp3C Treg cells results in pathology {8) Protective
Heligmosomoides polygyrus No changes in pathogen burden with Teg ablation (79) No effect
Leishmania major Tregs promote increased pathogen burden §0). Detrimental
Schistosoma mansoni CcD4CcD25C depletion increases in ammation 81) Protective
FUNGUS
Candida albicans CD4CCD25CTregs regulate immunopathology in Th1 mediated gastrointestidadisseminated Protective
Candidiasis 62)
CD4CCD25CFoxp3CTregs promote Th17 antifungal immunity and dampen immunopatholgy Protective
(41, 83)
Tregs regulate immunopathology §4)
Tregs suppress pulmonary hyperin ammation §5)
Aspergillus fumigatus Protective
Pneumocystis carinii Protective
MYCOBACTERIA
Mycobacterium tuberculosis Selective depletion of Fegs reduces pathogen burden §6). Detrimental
Foxp3C cells induce resistance to TB lesionsg7) Protective

Proteobacteria, and Verrucomicrobia. Small intestine isnono-colonization of GF mice with a murine isolate from
dominated by Enterobacteriaceae and Lactobacillaceagease the family Lachnospiraceae could limit the colonization of
colon contains the members of Bacteroidaceae, Lachnospieac C. dicile, suggesting that individual bacterial speciesear
Prevotellaceae, Rikenellaceae, and Ruminococcaceaeiradpectsu cient to confer colonization resistance to C. di cile 110.

(3). A number of factors including diverse environmental Enhanced susceptibility toward other infections after hiatiic-
conditions, intake of diet and medication, as well as hosiegie = mediated disruption of the intestinal microbiota compositibas
factors determine the dynamic composition of gut microbigia also been reported for vancomycin-resistant Enterococcus Spp
individuals (L03-107). Gut microbiota are capable of restraining and Salmonella enterica serovar typhimuriu®. typhimuriun)

the mucosal colonization by enteric pathogens, a proceg408 111). Mechanistically, mucosal carbohydrates such as
de ned as colonization resistancé . Thus, administration fucose and sialic acid liberated by resident microbiotaehasen

of antibiotics, and altering the resident microbiota dugimm  shown to control the growth of enteric pathogens. Antibiotics
mucosal infection is known to lead to post-antibiotic expamsi cause spikes in sugars that can worsentyphimuriumand

of the pathogens. Loss of overall diversity, or even de c#timgle  C. di cile infections (112. Microbiota alterations reduce the
group of bacteria can alter the susceptibility to gastratiteal numbers of germinal centers in IL21-receptor knockout mice,
infections. For example, Clostridium dicile (C. dicile) resulting in diminished Ig& B cells and reduced activation-
infection, the most common cause of nosocomial diarrhea induced cytidine deaminase in Peyer's patches. These deadts
often preceded by antibiotic usage. Colonization of C. dieci to the expansion of Egsand Th17 cells, and higher bacterial
in healthy mice in fact requires a pre-exposure to a cocktail oburdens, but dampening of Citrobacter rodentium-induced
antibiotics to alter the microbiota compositioi(9. However, immunopathology (13. Resident microbiota at mucosal
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interfaces can govern transmission and progress of parasitexample, a decreaseRoseburigpp (known acetate to butyrate
protozoan infections such as Toxoplasmosis and Amoebiast®nverters),Clostridiaceadamily, the generaBi dobacterium
(114. In the case of Toxoplama gondii infection in mice, Ruminococcusand Faecalibacteriumhas been observed in
reduction of microbiota in the gut by prolonged antibiotic patients with IBD. Although many of these communities are
treatment leads to impaired Toll like receptor (TLR)-11 andstrongly implicated in Jeg maintenance, direct mechanisms
Myeloid di erentiation response 88 (MyD88) signaling and of Treg regulation in the context of these genetic variants
subsequent de cit in Thl immunity, substantiating that gut and IBD are unclear. Combined de ciency of MyD88 and JH
commensals serve as natural molecular adjuvants duringene, which disrupts innate interactions of immune cells with
T. gondii infection (19. In a mouse model of Giardia intestinal microbiota and IgA responses respectively, cause
duodenalis infection, antibiotic induced alteration of eth overt in ammation, highlighting the requirement of ZgIgA
microbiome prevents CD8T cell activation by G. duodenalismediated mechanism in toleranc&1( 137. It has also been
Conversely, Gl infection can also modulate microbiota speci shown that microbiota-speci ¢ Fox53 Treg cells can convert
adaptive immunity (16. For example, a pathogenic Gl to interferon-g-producing Foxp§ T cells that have a potential
infection, in parallel to speci ¢ immune reactions againseth to establish mucosal tolerance3g. Disruption of TLR/MyD88
pathogen, induces immune responses to commensals amignaling in Foxp3-de cient mice protect them from excessive
generates long-lived commensal-specic T cells. Thus amammation at the environmental interfaces of skin, lungsd
adaptive response against commensals is an integral componentestine, showing that [Egs normally also restrain commensal
of mucosal immunity. However, such a commensal speci cdependent tonic MyD88-dependent pro-in ammatory signals
adaptive response in a dysbiosis setting can also contrilaute (139. Mice lackingCLEC7Agene (Dectin-1), thus having dys-
excessive inadvertent in ammation. In the context of HIV-1 regulated interactions with fungal microbiome (mycobigme
infection, damages in Gl tract and gut microbial translacat show an increased susceptibility to dextran sulfate sodiD®S)
(Proteobacterial species) are associated with reduction @iduced colitis (40. The role of Th17 cells and dgsin this
systemic and gut/rectal mucosal Th17 cells angysl(despite model is unknown. Certain proportion of intestinaldys co-
increased g Th17 ratio) (36, 71, 72, 117, 11§. A large body expresses RQR the master transcription factor of the Th17
of evidence suggests that increasegyslin circulation correlate lineage, with up to 35 % in small intestine and 65 % in colof-
to reduced immune activation in HIZ patients, underlining 143. Some of these RQfE Treg cO-produce IL-17A (Fegl7),
the anti-in ammatory protective roles of [Egsin patients (1- and are substantially diminished in GF or antibiotics-tredt
73, 118-125. While combined anti-retroviral (CART) therapy mice. Mono-association of GF mice with a panel of 22 bacterial
in HIVC patients generally ensures immune reconstitution inspecies from the human gastrointestinal tract shows that a
the peripheral blood, dysbiosis andedTh17 abnormalities number of microbes, not oniglostridialesare capable of induce
persist in gut and other mucosaé’( 126-132). This can present colonic RORJt® Tregs (142. Segmented lamentous bacteria
residual in ammation and heightened morbidities in cART (SFB) were only mediocre inducers of R@R Tregs in that
treated HIVE patients. However, in cART-treated HfVpatients ~ study (149. These studies demonstrate that intestinal RIER
with elevated levels of immune activation, it is not cleartiter  Tregs are highly microbiota-dependent and have functions in
altered levels and function of mucosaleddTh17 cells are promoting host immunity 62). Yet, RORt is not a perfect
associated with local microbial dysbiosis3(), and if these marker for pTegs because recent reports show the existence
alterations contribute to residual in ammation in HIV disse. of RORyt® tTregs particularly developing under in ammatory
Collectively, these ndings highlight the role of microléoin  conditions (143-145.
restraining pathogens and in ammation by having signicant  While most studies have focused on in-depth characteriratio
impact on Tegsand Th17 cells. of mechanisms by which microbiota engage to counter-regula
Alterations in resident microbiota and host immune cells,theirimmunostimulatory properties, the reciprocal e ect ofegs
caused by host genetic makeup also play arole in the pathdgenesn the composition and function of the intestinal microbiota
of inammatory bowel diseases (IBD). One of the adaptivewas largely ignored 5@ 56, 99, 146 147. Very recently,
arms of immunity that is impacted by such changes iggd analysis of mice harboring a reduced number of TIGF-
(133. Bacteroides fragilier example, has been found to invade dependent pJegs demonstrated numerous underrepresented
mucosa and cause excessive activation of the host intestimaetabolic processes and a limited overall diversity of the
immune response in genetically susceptible patiehsg)( while  microbiome, including a signi cant reduction ofactobacillus
under steady-state conditions the same bacterium can eréhanjohnsonii and Mucispirillum schaedler{149. Mechanistically,
Treg di erentiation and ensure intestinal homeostasis. Loss oft was conrmed that the impaired pikg generation could
autophagy protein ATG16L1 indgsresults in aberrant type 2 adversely aect the microbiota niche by elevating type 2
responses and spontaneous intestinal in ammatid34). It is  immune responses in the host, thereby declining the micrabiot
unclear whether microbiota directly induce the expressidn oabundance during the process of community assembly. In
ATG16L1in Tegs butitis evident that ATG16L1 and autophagic conclusion, the presence of gjs in the intestinal immune
process directly promotedg survival and metabolic adaptation system has a strong impact on the composition and function
in the intestine. Similarly, other genetic risk variants@sated of the intestinal microbiota. Similarly, IL-17F de cienayduces
with IBD such asNOD2, CARD9, ATG16L1, IRGM and FUT2Teg cells in the colon and modies the composition of the
signi cantly in uence the gut microbiota changesl§f. For intestinal microbiota and mediates protection against toli
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(149. Taken together, two-way interactions between residenivhich is now considered a “resident microbial perturbation”

microbiota and host intestinal immunity confer intestinal rather than a disease caused by a single pathogen, is well known

tolerance and immunomodulation. (18]). Resident bacteriunf. gingivalisthe keystone pathogen
contributes to altering the abundance and composition ofesth

normal microbiota. Shift and accumulation of gram-positive
IMPACT OF MICROBIOTA ON T regs AND aerobes to gram-negative anaerobes suclPagingivalis, T.
TH17 CELLS IN ORAL MUCOSA denticola, F. nucleatum, and Prevotellaasp.strongly associated

with damage in gingival barrier, loss of immune balance and
Oral microbiome is vital to maintaining both oral and systiem destruction of oral tissue in periodontal disea$g(). During this
immune homeostasis because oral mucosa is the primaprocess, bacterial antigens from skewed microbiota cansacce
gateway for the Gl tract, the biggest component of the immune&onnective tissues causing abnormal activation and exparmgio
system {50. While a vast majority of microbiota studies hasin ammatory CD4°CD69°CD103 memory T cells and Th17
focused on intestinal mucosae and their interactions witht g cells (L89. Another recent study showed that periodontitis-
microbiota, little is known about oral mucosal microenvinment  associated expansion of Thl7 cells required both IL-6 and
colonized with a large array of resident microbes, which i$L-23, and was dependent on the local dysbiotic microbiome
structurally and functionally distinct from the Gl tractlp:  (31). Shift in resident microbiota can also include increase
160. Actinobacteria BacteroidetesFirmicutes Fusobacteria in C. albicansa part of resident mycobiome in 50-70% of
and Proteobacteriare the major phyla accounting for 96— healthy humans, which can rapidly transition to a pathogen and
99% of the oral microbiome, while SR1, TMZyanobacteria, cause infections in immune-compromised and cancer patients.
Spirochaetes, Synergistetasd Tenericutes,are also found C. albicangs also shown to heighteR. gingivalisccumulation,
(<1% distribution). It is well established that oral-residentworsening the series of in ammatory events associated with
microbiota in poly-microbial interactions and soft-tisshi® Ims ~ periodontitis severity(83 184). Itis known that Tregl 7 cells exist
avert oral diseases, but direct e ect of such interactions oimn periodontitis lesions and could be involved in in ammatory
host oral immune cells is less clear6(-166. Oral mucosa responses against periodontopathic bactetiay. While there
maintains subsets of dendritic cells (DC), which producemay be only small changes in oral microbiome in HIV
immunomodulatory cytokines such as IL-10, T®E- and individuals, underlying mechanisms causing dysbiosis dad i
Prostaglandin E2, and are predominantly tolerogeriig, (67~  association with HIV associated periodontitis during SI\WH
169. These cells may be in intimate cross-talk with oral mu€osanfection are unclear(17 186 187). Precise events de ning Th17
Tregs(58,62 170 171), albeit details of such interactions betweenand Treg dysfunctions in the context of underlying dysbiosis and
these cells are unexplored in oral mucosa. However, alterati aggravating oral in ammation in HIV disease and periodorsiti
in Tregs and Th17 functions have been implicated in humanremain to be seen.
oral Candidainfections and periodontitis 36, 38, 40, 69, 172-
176. We and others have shown the presence of oral mucosal
Foxp% Tregs With protective functions during local infection RAICROBIOME IN MUCOSAL IMMUNITY
(89, 158 169 170. The interrelationship between these celsAND INFLAMMATION IN
and oral commensals during an oral infection was also exploreQTHER MUCQOSAE
(58 170. In the context of oropharyngeal candidiasis (OPC)
infection, Treg cells play a critical role in reducing fungal Lung, previously thought to be sterile, is now known to
burden and establishing homeostasis during post anti-fingéharbor a complex and dynamic microbial community 06500
response 177). Tregs play rather an unconventional role of species, with a high resemblance to oral microbiome&g(
enhancing the Th17 cell response and neutrophil in Itration 189. Lung microbiome strongly in uences the development
during early acute response, but are associated with reducatid progression of allergic responses and asthri@0)(
TNF-aexpressionin CD4T cells atresolution pha88 01,179.  Disrupting the normal microbiome with childhood antibiotic
Candida infection in mice by itself increases the proportion exposure increases the risk of childhood asthPrateobacteria
of Foxp§Tregs in a TLR2/MyD88 dependent manner in oral abundance in lower airway secretions correlates with pro-
mucosal tissues and draining cervical lymph nod&$ 83, 91).  inammatory Th17 cell proportions in asthmatic individuals
A small proportion of those Foxp3 cells co-express R@R (191, 199. Similarly, in cystic brosis patients, alterations of
and IL-17A (Tregl 7). Antibiotic mediated depletion of resident some groups in the polymicrobial community signi cantly a ect
bacteria signi cantly diminishes the frequency of Fo?ﬂ?ﬁeg the disease progression. Also, in chronic obstructive pulamngn
IL-17A  and Tegl7 cells, as well as conventional Th17 cellslisease (COPD) patients, microbial dysbiosis associatéa wi
not expressing Foxp3. Reduction of these cells is concomitantucus hyper-secretion and reduced airway clearance results i
with an increase in tissue pathology and fungal burden in orathronic aberrant in ammation and airway damagé93. Lung
mucosa, demonstrating that resident bacteria are imporfant microbiota alterations are also associated with di erenaes i
controlling Foxp¥ cells and Th17 cells, as well as mucosapneumococcal clearancédy).
immunity (Figure 1). Interestingly,Candidacan also promote Multiple genera of microbiota exist in vaginal mucosa,
Th17 and Teg responses in oral mucosa3 179 180. The often dominated by species dfactobacillus and a diverse
impact of oral resident microbiome in periodontal in ammatip  array of anaerobic microorganisms, includingtopobium,
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FIGURE 1 | Controlled commensal bacteria/Teg/Treg17/Th17 cell interplay functions as a switch between proteéve immunity and overt in ammation in oral mucosa.
OPC, Oropharyngeal candidiasis; SCFA, short chain fatty &t CLN, cervical lymph node; APC, antigen presenting cells

Anaerococcus, Corynebacterium, Eggerthella, GardnereMOLECULAR MECHANISMS OF
Mobiluncus, Peptoniphilus, Prevotella, Sneathial Finegoldia MICROBIOTA-ASSOCIATED ALTERATIONS
genera {99. Lactobacillilargely impact the susceptibility to OF Trea/TH17 CELLS IN MUCOSAE

T. vaginalisinfection in women. Although mechanisms are

still under investigation, there is precedence that Thl7scel Resident microbes have a variety of mechanisms for confgrrin
and Tregs can have protective and anti-inammatory e ects yycosal colonization resistancé? 204-207). They include:
during T. vaginalisinfection (196. During a vaginal herpes (1) directly competing for shared metabolites)) (expression
simplex virus-2 (HSV-2) infection, mice lackingrels fail t0  of inhibitory bacteriocins, %) induction of protective mucus
timely accumulate HSV-2-specic CD4 T cells and control the|ayer' and {) priming of protective immune response€dg
infection. This nding underscores the protective role Ofea—s 209 Some of the examp|es include commensal dependent
in facilitating productive mucosal immunity in vaginal mus®  metabolism of secondary bile acids to deoxycholate, praduct
(197, 198. However, mechanisms of direct control of vaginalof organic acids, induction of antimicrobial peptides in Ptne
microbiome on Tegs and Th17 cells and infection responsescells, and promoting elevated antibacterial T cell responses
remain to be seen. In ocular mucos$agrynebacterium mastiditis preventing colonization and dissemination of pathogeAsa-
induces commensal speci ¢ IL-17 resporgkT cells, recruiting 213, Although resident bacteria are known to modulate energy
neutrophils and protecting the ocular mucosa from pathogenignetabolism producing pyruvic acid, citric acid, fumaric acid
infections (L99. In nasal mucosa, on the one hand there isand malic acid 214, how pH changes determine the mucosal
evidence that butyric acid-producing microorganisms aiggec immunity and T cells warrants further investigation. Resitle
with an impaired olfactory function 06-202). On the other, microbiota employ multiple mechanisms that contribute to
nasal microbiome is structured by IL-17 Signaling that thatcoordination of TeyTh1l7 axis and safeguarding of mucosa
supports resistance t8. pneumoniaeolonization in the nasal (Figure 2). For example, microbiota dependent TLR signaling in
mucosa of mice403. Collectively, while mcrobial dysbiosis and host is one of the important mechanisms by which microbiota
Tregd Th17 changes are associated with many of these infectionspntrol in ammation and tolerance. TLR2/MyD88signaling is
detailed mechanisms remain to be investigated. required for generation and expansion of N#¥1 Foxp3X
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cells and TFegl7 cells in oral and gut mucosed). In gut  Eubacterium multiformgintestine), andAnaerococcus tetradius
mucosa the capsular polysaccharide A of Bexteroides fragilis (vagina). These bacteria ferment indigestible oligosaicdas
stimulates production of IL-10 by Foxp3cells in a TLR2 and cell surface fucosylated proteins by anaerobic glycolysis
dependent manner, thus facilitating mucosal tolerangéq. resulting in SCFA production. SCFAs are present in the intesti
Recently it was found that this commensal also delivertumen at a total concentration of 100 mM at a ratio of 6:3:1,
immunomodulatory molecules to immune cells via secretidn ofor acetate, propionate and butyrate respectively. Although
outer membrane vesicles through a non-canonical autophagpis ratio hinges on carbohydrate availability, microlaiot
pathway for inducing IL-10 expressing Foxp3cells. This composition and intestinal transit time, acetate and butgra
mechanism requires the expression of host geAg&16L1 appear to be the highest and least in abundance respectively
and NOD2, whose polymorphisms are known to be associated231). Emerging data show that SCFAs contribute to immune
with IBD (216. Selective deletion oftgl6llin T cells in homeostasis in mucosa, although excessive and suboptimal
mice also results in loss of Fox‘bBI’ reg Cells and spontaneous levels of SCFAs are often associated with in ammation and
intestinal in ammation characterized by aberrant Th2 respes.  cancer. Intestinal SCFAs have been shown to potentiate Foxp3
These data indicate microbiota-host interactions intielgt cell dierentiation and immunomodulatory activity in the
involve the processes of autophagy anggTdi erentiation.  colon (53 99, 147 232. Mechanistically, in addition to direct
Moreover, loss of MyD88-STAT3 signaling inreds causes histone deacetylase (HDAC) inhibition, SCFAs can induce the
loss of mucosal Bgs and impaired T follicular regulatory expression of retinal aldehyde dehydrogenase 1 family membe
cell interactions, resulting in poor IL-21 and anti-micrathi 1a (Aldhla) and TGHL in intestinal epithelial cells and DCs
IgA responsesZLl7). Failure of this pathway results in over- (10Q 221, 233 234. Aldhla could further convert vitamin
growth of pathobionts, overt Th17 cell expansion and inteatin A into its metabolite retinoic acid in G protein—coupled
in ammation. However, the requirement of resident micralone  receptor43 (GPCR43) and Gprl09a manner, which is capable
induced MyD88 signaling speci cally indgs to promote Teq  of facilitating Teg induction. These tolerogenic DCs express
sustenance and intestinal tolerance is still debated~219. CD103, sample antigens in the intestinal lamina propria, and
Similar toB.fragilis colonicClostridium rhamnosualso potently migrate to the draining mesenteric lymph node (MLN) to
induces IL—l@TregS in a TGFbl dependent manner, which induce immunomodulatory T cells2G35-237). Whether SCFA

is correlated to increase in systemic IgE and resistance toediated induction and or sustenance of mucosaldrequire
colonic in ammation (56, 99). Similarly, microbiota and immune these aforementioned processes is unclear and remain to be
cell networks are known to control the production of IgA, studied. However, antibiotics precipitously decrease thal or
which is central for mucosal barrier and intestinal toleranc SCFAs in saliva, showing that in the oral resident bacteria-
For example Mucispirillum spp. and SFB have been directlyderived-SCFA is functionally involved in controlling oral
implicated in production of intestinal IgAX37 220 221). Tregs  mucosal immunity and in ammation ¢2). Lending credence
are also known to promote IgA secretion, and maintenance afo this tenet, antibiotics treated mice show not only insed
diversi ed and balanced microbiota, which in turn facilieg oral in ammation, but also intestinal immunopathology, whe
their expansion through a symbiotic regulatory loop, and preve infected with oralCandida Mechanistically, antibiotic treatment
overt in ammation (222 223. Moreover, ROI@tC Thl7 cells, results in reduced Egs Th17 and TFegl7 cells in oral mucosa
as well as IL-17A from other cells also promote epitheliabnd tissue draining cervical and axillary lymph nodes in atéel
polymeric Ig receptor and intestinal IgA expression, furthermice. Intestinal in ammation in oralCandidainfected mice is
contributing to intestinal homeostasis2?4 225. SFB also characterized by an increase in IFNproducing Thl cells and
control commensal tolerance and anti-microbial host resges  co-producers of IFNg and IL-17A (Thl) cells. Although the
through intestinal epithelial cell fucosyl tranferase 2 @ggion exact mechanism of antibiotic mediated reduction @fgf Th17

and fucosylation, a process that is dependent on BOR cells and Tegl7 cells is unclear, administration of SCFA partially
group 3 innate lymphoid cells (ILC3s) and IL-22 expressiorrestored these populations and reduces oral immunopathology
(226 227). Loss of intestinal fucosylation results in increaseduring the infection. SCFA administration however, only
susceptibility to infection bysalmonella typhimuriumlLC3s can  moderately ameliorates the intestinal in ammation. Thienes,
also express major histocompatibility complex class Il (MHCIl)the mechanism of Thl-mediated gut in ammation during oral
and mediate intestinal selection of CBA4T cells in order to Candidainfection in the context of altered microbiota remains
limit commensal bacteria-speci c CD4 T-cell responsg88. to be addressed. Recently, Atarashi et al. showed that oral
Although IL-6, induction of Tegs or Th17 cells were shown bacteriumKlebsiellaspp. isolated from the salivary microbiota
to be not required for ILC-mediated tolerance, alterations elicits a severe Th1 gut in ammation in the context of intest
Tregl7 and Th17 cells in the context of fucosylation remaindysbiosis, in a genetically susceptible h@ig. This nding

to be studied. Jeg/Th17 cell di erentiation and expansion are underscores the role of oral resident microbes sucKlabsiella
also independently controlled by speci c members of anaerobispp. andC. albicansn modulating T cells, possibly translocating
bacteria producing short chain fatty acids (SCFAs), such a® gut and causing overt in ammation in the gut in the context
acetate, propionate and butyrate29 230. Some of these of resident microbial dysbiosis. Supporting this tenet, postl or
bacteria includeBacteroides, Bi dobacterium, Feacalibacteriungavage oC. albicangnfected mice pre-treated with antibiotics
generaand Enterobacteriaceae family, Porphyromonas gingivalshowed signi cantly altered composition of intestinal motiota
Fusobacterium nucleaturfmouth), Clostridium cochlearium, as well as CD% T cell mediated lung in ammation, following
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aerosol introduction of an allergen. However, mice withaaty  correlate with a signi cantly attenuated EAE, compared with
antibiotics pre-treatment did not develop an allergic respen conventionally raised mice. Remarkably, intestinal colatian
in the airways 239 240. Whether changes in SCFA, oref  with SFB alone can promote Th17 cells in the gut and in the
and Thl7 cells in the lung contribute to the in ammation central nervous system (CNS), enhancing disease progression
is unknown. (270. Furthermore, partial elimination of intestinal microki
Mechanistically, SCFAs also cause acetylation of p70 @éneliorates established collagen-induced arthritis bypkening
kinase and phosphorylation rS6, promoting the mTOR activityTh17 responses in mice2(]). Some bacteria also provide
mTOR activity was shown to be required for generation ofin ammatory signals resulting in chronic in ammation and
Thi7 (T helper type 17), Thl, and IL-20T cells @41). tumorigenesis, likely by inducing genetic and epigenetanges
Moreover phosphoinositide 3-kinase and mTOR pathways plain host cells. For exampleFusobabacteriaspp. has been
pivotal roles in integrating growth signals in CBA4T cell implicated in increased risk of IBD and colorectal cancgrd-
di erentiation (242-249. Multiple studies support the role of 275. Also, in oral mucosa, the abundance Bfisobacterium
mMTORC1 and mTORC2 proteins in regulating Th1l7 anggl increases, while the number dtreptococcus, Haemophilus,
fate decisionsq47 250 251). mTORC1 signaling is constitutively Porphyromonas, and Actinomycedecreases with cancer
active in Teg cells, and disruption of mTOR protein as progression in oral squamous cell carcinorda. Interestingly,
well as unrestrained mTOR hyper-activation, both have beeRusobabacteriaand several other bacteria of oral mucosal
shown to cause autoimmunity by impairing Foxp3 expressiororigin, including genera of Streptococcus, Staphylococcus,
and Treg functions £52-260). Another study has also shown Peptostreptococcusay translocate to intestine in the context
that mTORC1 and its downstream target hypoxia-inducibleof gut in ammation and carcinogenesi{7~279, similar to
factor-la (HIF-1a) are needed for Foxp3 induction,.cf lipid  Klebsiellssppand C. albicanin susceptible hosto@, 239. It is
and cholesterol biosynthesis from glucose, and proliferatiotempting to speculate that loss ofef functions in the context
and suppressive functiom vivo (244 254). Taken together, of dybiosis, excessive SCFA and oral microbial translonati
while direct role of SCFA in mediating mTOR activation andmay have contributed to exuberant intestinal in ammationda
subsequent g induction in mucosa is unclear, these studiespredisposition to carcinogenesis in these studiégre 2).
highlight the importance of how immunologically relevant However, whether the mouth- to -gut translocation is a cause
microbiome can control Jegsand mucosal homeostasis through or consequence of dysbiosis and intestinal in ammationd an
multiple mechanisms. the underlying mechanisms still remain to be understood and
warrant further investigation.

MICROBIOTA AND T rec/TH17 CELL

REGULATION OF IMMUNE SENESCENCE ~~ THERAPEUTIC APPLICATIONS OF
AND CHRONIC INFLAMMATION MICROBIOTA ALTERATIONS AND

MICROBIOTA DERIVED METABOLITES
While resident microbes have aforementioned protective
functions in mucosa, they can also trigger and sustaiis we discussed above, studies on patient cohorts, mectwanisti
in ammation during aging and other chronic in ammatory studies on mice and epidemiological studies have led to a
conditions. Some studies demonstrate direct relationshipetter understanding of how microbiota changes impact matos
between aging and changes in microbiota, albeit the meshasi immunity, and vice versa.Mechanistic “proof-of principle”
remain largely unstudied. Aging causes increased acctimuola studies using disease models have opened ways to manipulate
of gutEnterobacteria, Streptococci, and ydagtdeclining levels these processes, providing therapeutic approaches. Some of
of Akkermansia muciniphila Bi dobacteria and Bacteroides the widely used approaches include administration of sodium
(261-266. Reduceddkkermansia muciniphilés associated with butyrate and pre- and pro-biotics, and transplantation of
reduced butyrate and impaired intestinal barrier. Consetlye fecal microbiota 286-283. However, there are hurdles in
aged mice display endotoxin leakage, and triggering of 4-1B@ro-biotic and microbiota transplantation approaches. Exigtin
receptor signaling and insulin resistance. In oral mucosanicrobiota, whether it is healthy or dysbiotic is largelytdea
aging causes higher levels of RANKIcells, and increased over time in an individual. Without profound perturbation
in ammatory Th17 cell accumulation, with concomitant loss of the existing microbiota, it is challenging to introduce
of alveolar bone, which are dependent on the presence aficrobiota exogenously. The e ects of exogenous bacteria
commensal microbiota3(, 267, 269. In contrast, these events introduced by probiotic and transplant approaches are greatly
do not occur in in germfree mice periodontium, showing in uenced by existing microbiota in a competitive niche, and
potentially pathogenic roles of commensal microbiota in @gin are inconsistent. Therefore, approaches to target thesegiith
associated dysbiosis setting. Similarly, resident miotathave favor of exogenous bacteria are being studig8l3(284). Direct
been implicated in the onset and progression of experimentadministration of microbial derivatives appears to be a prongs
autoimmune encephalomyelitis (EAE29. GF mice exhibit venue. Butyrate has been shown to alleviate high-fat-dikiced
lower levels of the pro-inammatory cytokine IFN- and non-alcoholic fatty liver disease. It potently down modutate
IL-17A producing cells, and a reciprocal increase igd peroxisome proliferator-activated receptemediated activation
in the intestine and spinal cord. These changes in GF micef b oxidation, causing reduced in ammatior285. For cCART
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FIGURE 2 | Cross talk between microbiota and immune cells during homestasis and dyshiosis—Role of Th17 cells and r&gs in oral and intestinal mucosa. During
homeostatic conditions, normal microbiota promote the stiulation of epithelial cells, Th17 cells and&gs, and maintain barrier function and commensal tolerance. In
oral mucosa, Th17 cells are induced by mastication induced mchanical damage, independent of commensals. However, indth mucosae SCFA mediated induction
of Tregs is key for mucosal barrier function and immunomodulation. Oring in ammation and cancer, excessive SCFAs can increaseiammatory Th17 cells and Treg
population that may be dysfunctional. The nature of their teraction with Th17 cells, tumor associated M2-type macropages and other cells remain unclear.

treated HIVE individuals, aside from cART treatment, probiotics such as inulin could counterbalance the age-related miotab
have been studied to combat persistent systemic in ammatiordysbiosis, potentially leading to neurological bene 287, 289.
This approach in the context of CART may lead to improved andSimilarly, dietary ber also suppresses colon carcinogesnisi
holistic management of in ammatory events and higher cance polyposis miceZ89. Mechanistically it has been shown to inhibit
susceptibility in HIMC patients. Application of probiotics has colorectal cancer cell migration through micro-RNA regidat
also shown positive e ect on the course of pneumonia, acuté290. In summary, alterations of mechanisms of microbiota-host
exacerbation of bronchial asthma and COPD in mice modeldnteractions are proving to hold promise for treating a vayief

but warrants further studies in human2&6. SCFA has been disorders in humans.

shown to have therapeutic potential in microbiome-targeted

interventions in anti-aging medicine. Butyrate and digtadters  CONCLUSION

have been shown to promote anti-in ammatory e ects in the

context of aging associated neuro-in ammation in micg8{). It is now well established that resident microbes provide
Adult and aged mice fed with 5% inulin (high ber) diet for 4 enormous advantages to the host, while dysbiosis can trigger
weeks show an altered gut microbiome and increased butyratgcute and chronic in ammatory conditions. One of the
acetate, and total SCFA production, coinciding with a reéret  mechanisms by which these microbes regulate immunity id
in neuro-in ammation. High ber supplementation in aging is a through controlling Tegsand Th17 cells. These cells present in
non-invasive strategy to increase butyrate levels, ansktii@ta various mucosal locations and share various signaling paysw
suggest that an increase in butyrate through added solute  for their development and sustenance, as stated above. Howev

Frontiers in Immunology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 426



Pandiyan et al. Microbiome and Mucosal Tegs and Th17 Cells

signals modulating these subsets unique to each mucosalechanistic investigations. Taken together, further aesle in
environment in dierent epithelial cell contexts are unclear microbiota targeted approaches will enable the eld to take
Most mechanistic studies showinge§Thl7 developmental the center stage in the management of health and disease
regulation were performed using thie vitro cultures using in humans.

cells isolated from blood (human), spleen and lymph nodes

(mice). While there is enough evidence to show that theds celAUTHOR CONTRIBUTIONS

could be regulated by overlapping signaling mechanismss cell

from these mucosae were not directly compared for similesiti PP and JH wrote the manuscript. NB, ES, MZ, and SJ contributed
and dierences in their development and functions. Suchto the discussion.

studies are warranted to get further insights in to hometista
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in the context of microbial manipulation approach will o er
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