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Abstract 25 
 26 
Lectins are proteins found in all domains of life with a plethora of biological functions, especially in the 27 
infection process, immune response, and inflammation. Targeting these carbohydrate-binding proteins 28 
is challenged by the fact that usually low affinity interactions between lectin and glycoconjugate are 29 
observed. Nature often circumvents this process through multivalent display of ligand and lectin. 30 
Consequently, the vast majority of synthetic antagonists are multivalently displayed native 31 
carbohydrates. At the cost of disadvantageous pharmacokinetic properties and possibly a reduced 32 
selectivity for the target lectin, the molecules usually possess very high affinities to the respective lectin 33 
through ligand epitope avidity. Recent developments include the advent of glycomimetic or allosteric 34 
small molecule inhibitors for this important protein class and their use in chemical biology and drug 35 
research. This evolution has culminated in the transition of the small molecule GMI-1070 into clinical 36 
phase III. In this opinion article, an overview of the most important developments of lectin antagonists 37 
in the last two decades with a focus on the last five years is given. 38 
 39 
 40 
Introduction 41 
 42 
Lectins are a highly diverse family of proteins found in all domains of life.[1,2] Various folds and classes 43 
have been identified and the common functional feature is their specificity for carbohydrate ligands. 44 
These glycan-binding proteins have many important roles in infection, cell recognition, communication 45 
and various intracellular processes, such as protein folding and protein targeting. 46 
 47 
Numerous viral, bacterial, fungal, and parasitic pathogens employ lectins for initiation and maintenance 48 
of an infection by adhering to surface-exposed glycoconjugates of their host organisms.[3–5] On the 49 
other hand, the mammalian host has developed a plethora of lectin-containing pattern recognition 50 
receptors of the innate immune system recognising glycan structures on intruders.[6–8] In addition to 51 
recognising these non-self structures, other mammalian lectins bind to self-epitopes and thus mediate 52 
cell-recognition processes like inflammation and cancer metastasis.[9–11] 53 
 54 
The natural ligands of lectins are mostly bacterial or fungal polysaccharides, bacterial 55 
lipopolysaccharide and peptidoglycan, or eukaryotic glycoconjugates of lipids or proteins.[1,12] Except 56 
for bacteria which can have a high diversity among their monosaccharides, generally a relatively small 57 
set of different monosaccharide subunits are shared between animals, plants, fungi, parasites, bacteria, 58 
and other organisms. These building blocks are assembled into more diverse oligosaccharides where a 59 
very high complexity can be achieved due to many possible stereo- and regioisomers. In many cases, 60 
this leads to organism-specific oligosaccharides, which can then be recognized by innate immunity as 61 
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non-self antigens and induce neutralization of the intruder[13], or on the other hand to allergic reactions 62 
as observed for insect glycans for example in bee venom.[14] The opposite phenomenon that pathogen 63 
and host have identical glycoconjugates is also observed. The latter has been termed molecular mimickry 64 
or glycomimickry, a stealth process of the pathogen believed to be an evolutionary adaptation for 65 
evasion of immune surveillance of the host.[15,16] 66 
 67 
Despite the complexity of those oligosaccharide structures, lectins often recognize terminal 68 
monosaccharides or smaller oligosaccharides on a given glycoconjugate. Two common binding modes 69 
of carbohydrate ligands are shown in Figure 1A: (i) vicinal hydroxyl groups chelate a Ca2+ ion present 70 
in the binding site, or (ii) carbon-bond hydrogen atoms of the carbohydrate ring interact via CH-π 71 
stacking with aromatic amino acids in the binding site. Due to the recognition of rather small epitopes, 72 
common ligand specificity of different lectins with diverse functional roles often occurs. An example 73 
are the functionally different human DC-SIGN and the bacterial lectin LecB with shared specificity for 74 
Lewis blood group antigens.[17–19] A large data set for the glycan specificity of many lectins using 75 
microarrays is provided by the Consortium for Functional Glycomics (see 76 
http://www.functionalglycomics.org). 77 
 78 
Specificity of the lectins can be further tuned by recognising functional groups attached to the essential 79 
carbohydrate, and for example lipids are recognised by a secondary site of the lectin Mincle,[20,21] O-80 
methylation is required for recognition by the tectonins,[22,23] sulfates on nearby amino acids enhance 81 
binding of P-selectin to the Lewis-blood groups on glycoproteins[24] and phosphates are required for 82 
intracellular trafficking of proteins by the mannose-6-phosphate receptor.[25] 83 
 84 
Lastly, the spatial presentation of ligand and/or lectin’s carbohydrate binding sites (Figure 1B), as well 85 
as clustering of several lectin protomers into oligomeric bundles or membrane embedded protein 86 
complexes can contribute significantly to specificity by augmentation of apparent binding affinity 87 
through avidity.[7,26]  88 
 89 
Carbohydrate specificity, requirements of additional functional groups and spatial presentation of 90 
binding sites are important aspects for the design and success of lectin-targeting probes in chemical 91 
biology and drug research. Therefore, the design of lectin antagonists usually follows various 92 
approaches from (i) competitive inhibition of a carbohydrate recognition site, (ii) targeting adjacent 93 
binding sites, (iii) allosteric inhibition, and (iv) multivalent competitive inhibition of two or more 94 
binding sites (Figure 1C). 95 
 96 
 97 
 98 
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 99 
Figure 1: A: Schematic representation of two important recognition modes of carbohydrates by lectins: 100 
(i) calcium-ion mediated binding of the ligands, example β-galactoside and LecA (PDB: 1OKO) (ii) 101 
tryptophan-mediated stacking on hydrophobic faces of carbohydrates, example galactoside with 102 
galectin-3 (PDB: 4JC1). B: Various strategies for domain/binding site orientation: (i) monomeric in 103 
galectin-3 (4JC1), (ii) trimeric virus hemagglutinin (6CF5), (iii) tetrameric LecA (1OKO), (iv) 104 
tetrameric LecA ortholog PllA with altered domain orientation (5ODU), (v) pentameric Shiga-like toxin 105 
B subunit (1QNU), (vi) trimeric BambL containing 6 carbohydrate binding sites in and between subunits 106 
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(3ZW2). C: Schematic representation of different lectin inhibition approaches: (i) direct inhibition of 107 
carbohydrate binding sites, (ii) growing towards non-carbohydrate binding sites, (iii) allosteric 108 
inhibition (iv) multivalent inhibition which refers to clustered binding sites, either multivalent proteins 109 
or monovalent lectins clustering on cell membranes. 110 
 111 
 112 
Consequently, lectins have developed into attractive targets for chemical biology and medicinal 113 
chemistry over the past two decades.[27,28] Very active areas of research are the targeting of (i) lectins 114 
of pathogenic origin to interfere with mechanisms of infection by viruses and bacteria, and to a smaller 115 
extent also fungi and parasites, (ii) the selectins as a family of three closely related proteins crucial for 116 
cell migration in inflammation and cancer, as well as (iii) immunotherapeutic or immunomodulatory 117 
approaches for the mammalian lectins langerin in vaccine delivery, DC-SIGN in HIV infection or the 118 
galectins in cancer and immune modulation. Lectins discussed in this opinion article are summarized in 119 
Table 1.  120 
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Table 1: Overview of bacterial, viral, and mammalian lectins discussed in this opinion article 121 
 122 

 Origin  Binding specificity  Key roles Status of development/ Indicator 

Bacterial Lectins 

FimH E. coli Man Adhesion, biofilm formation Lead optimization (1, 2)[29,30], 
EB8018 in Phase 1 clinical trials 
(www.clinicaltrials.gov, 
NCT03709628) 

FmlH E. coli Gal, GalNAc Adhesion, biofilm formation Hit optimization (3)[31] 

LecA P. aeruginosa Gal Adhesion, biofilm formation Exploratory studies 
First covalent lectin inhibitor (5)[32] 

LecB P. aeruginosa Man, Fuc Adhesion, biofilm formation Lead optimization (6, 7)[33,34] 

Shiga toxins S. dysenteriae,  
E. coli 

Gal, Glc Toxin Lead optimization on hold,  
First peptide-based inhibitor [35] 

Cholera toxin V. cholerae Gal, Fuc Toxin Hit optimization (8)[36] 

Viral Lectins 

Hemagglutinin Human influenza virus Neu5Ac Adhesion, cell entry Hit optimization (12) [37–39] and 
exploratory studies (10, 11) [40–42] 

Hemagglutinin-
neuraminidase 

Human parainfluenza virus Neu5Ac Adhesion and detachment, cell entry Hit optimization [43,44] 

Capsid protein 
P domain 

Norovirus HBGAs Adhesion, cell entry Exploratory studies (14, citric acid) 
[45–47] 

Mammalian Lectins 

Langerin Langerhans cells Man, Fuc, GlcNAc, sulfated 
Gal, Glc 

Immune response  Exploratory studies 
First allosteric mammalian lectin 
inhibitor (15)[48] 

DC-SIGN Dendritic cells Man, Fuc, GlcNAc Immune response Exploratory studies 

Selectins L-Selectins: leukocytes 
P-selectin: platelets and 
endothelial cells 
E-Selectins: endothelial 
cells  

sLex 
E/P-selectins: Fuc, GlcNAc 
P/L-selectins: Man, Gal and 
Sulfation[49] 

Cell adhesion GMI-1070 (20) in Phase 3 clinical 
trials against vaso-occlusive anemia 
(www.clinicaltrials.gov, 
NCT02187003) 

Mincle Immune system Glycolipids with terminal Glc 
or Man 

Immune response  Exploratory studies 
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Galectin Circulating proteins Gal e.g., N-acetyllactosamine  Regulate cell death TD139 (24) in Phase 2 clinical trials 
against idiopathic pulmonary fibrosis 
(www.clinicaltrials.gov,  
NCT03832946)   

Siglecs Immune-cells Neu5Ac Cell-cell signaling, immune response 
and adhesion 

Exploratory studies 
 

 

  123 
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Bacterial Lectin Antagonists 124 
 125 
Bacterial antibiotic resistance is increasing worldwide at an alarming rate. As one consequence, 126 
antivirulence drugs have gained considerable research interest as alternative treatment approach with 127 
the aim to avoid the rapid onset of resistance.[50] In this context, the inhibition of bacterial lectins to 128 
prevent infection and persistence is a newly exploited strategy.[3,27] Targeting lectins involved in the 129 
formation of bacterial biofilms are of particular interest since bacteria embedded in their self-produced 130 
biofilm matrix exhibit increased antimicrobial resistance compared to free floating planktonic bacteria. 131 
Biofilm-associated bacterial infections are responsible for a broad range of chronic/recurring diseases. 132 
[51] 133 

The Gram-negative bacterium Escherichia coli is the prime pathogen in urinary tract infections (UTIs) 134 
and important for intestinal infections as a consequence of Crohn’s disease (CD). E. coli can build 135 
various organelles called pili and fimbriae which are oligomeric cell appendices built up of several 136 
proteins. These organelles are often employed for bacterial adhesion. The pilus or fimbria lectins FimH 137 
and FmlH, localized on the top of the different organelles, play decisive roles in host colonization, 138 
invasion, and biofilm formation.[52] Thus, inhibition of these lectins to antagonize infections presents 139 
a viable therapeutic strategy.[53,54] 140 
  141 
 142 
FimH is located on the tip of fimbriae and usually binds to mannosylated glycoconjugates in the bladder 143 
endothelium. Pathogenicity of E. coli clinical isolates expressing different fimH alleles varies, but the 144 
mannose binding pocket is invariant.[52,55,56] Hultgren’s group demonstrated the activity of high 145 
affinity mannoside FimH inhibitor against different uropathogenic E. coli strains.[57] In recent years, 146 
several research groups have been developing FimH antagonists for treatment of urinary tract infections 147 
and gut inflammations associated with CD. X-ray crystallography guided drug design focused on 148 
optimization of interactions with the so-called tyrosine gate adjacent to the mannose binding site. 149 
Introduction of aryl and alkyl aglycons increased the binding affinity significantly compared to simple 150 
mannose.[58–60] Nanomolar binding affinities were achieved by introducing biaryl aglycons that are 151 
tightly coordinated by the tyrosine gate.[61–63] High affinity biaryl mannosides were further optimized 152 
to increase metabolic stability by replacing the labile O-glycosidic bond with carbon-based linkers to 153 
the aglycon.[29,64] Ester and phosphorylated prodrugs were successfully explored to improve oral 154 
bioavailability of both O- and C-mannosides.[29,65,66] Rational design and optimization of FimH 155 
antagonists are summarized in a recent review by Mydock-McGrane et al..[67] The promising 156 
preclinical candidate 1 (EC90 = 31 nM, Figure 2) is one example of a highly optimized FimH inhibitors 157 
with good metabolic stability and high efficacy in mouse models of acute and chronic UTI.[29] Recent 158 

optimization attempts yielded thiomannosides (e.g. 2, EC90 = 0.31 µM, Figure 2) with improved 159 
metabolic stability compared to respective O-mannosides, ability to inhibit biofilm formation in vitro 160 
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and with a prophylactic effect in a mouse UTI model.[30] The first FimH antagonist entering clinical 161 
trials was EB8018 from Enterome (Paris, France) designed for the treatment of CD, but its structure has 162 
not been disclosed. In collaboration with Takeda, EB8018 has completed Phase Ia and the Phase Ib trial 163 
is ongoing in early 2019 (www.clinicaltrials.gov, NCT03709628). Furthermore, Fimbrion Therapeutics 164 
(St. Louis, MO) has announced the selection of a not further specified clinical candidate as antibiotic 165 
sparring molecule against UTIs in collaboration with GSK (www.fimbrion.com, press release Dec 06, 166 
2018). 167 
 168 
As a secondary target of uropathogenic E. coli, the FimH-like adhesin FmlH recognizes Gal(β1-169 
3)GalNAc epitopes on bladder epithelium and enhances E. coli urinary tract colonization.[54] Recently, 170 
first structure-based inhibitor design approaches FmlH have been reported.[31,68] To date, the best 171 
FmlH inhibitor 3 (Figure 2) is based on N-acetyl galactosamine carrying a further substituted biphenyl 172 
aglycon and displays very high binding affinity (IC50 = 34 nM), good aqueous solubility and high 173 
metabolic stability. Unfortunately, 3 showed only low oral bioavailability in rats of less than 1% and 174 
further optimization is therefore mandatory.[31,68]  175 
 176 
The opportunistic pathogen Pseudomonas aeruginosa has two soluble lectins, the extracellularly 177 
secreted proteins LecA (Figure 1) and LecB, both mediating bacterial virulence and being crucial 178 
components for biofilm formation.[69–71] Consequently, both proteins have been subject to intense 179 
research towards biofilm modulators and in drug discovery for antivirulence drugs.[27,28,72–74] LecA 180 
binds to various α-galactoside-terminating glycoconjugates with the glycosphingolipid Gb3 as proposed 181 
natural ligand.[75] This homotetrameric lectin was later shown to mediate bacterial uptake via Gb3 182 
where it acts as a lipid zipper.[76,77] The affinity of LecA to galactose and simple glycosides thereof is 183 
rather weak in the 50-100 µM range. Consequently, development of LecA antagonists mainly focused 184 
on multivalent display of galactosides using many different linkers and maximizing the number of 185 
presented epitopes.[28,78] Very potent tetravalent galactoclusters with low nanomolar binding affinities 186 
towards LecA have been developed.[79–83] In contrast to the high target binding affinity, they showed 187 
only moderate inhibition of biofilm growth in the micromolar range in vitro. 188 
 189 
The Pieters group has undertaken a different approach and focused on divalent galactosides oriented in 190 
a perfect manner to bridge two adjacent binding sites in the LecA tetramer. Several highly potent 191 
divalent inhibitors with the rigid spacers consisting of glucose and triazole groups were obtained, 192 
including the most potent LecA inhibitor reported so far with a Kd of 12 nM (4, Figure 2).[84,85] Again, 193 
recent optimization of these highly potent molecules on the target revealed a need for additional 194 
multimerization and rather high micromolar concentrations for biofilm blocking.[82,86] 195 
 196 
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Monovalent galactose-derived ligands with binding affinities in low micromolar range could be obtained 197 
after introduction of a β-aryl aglycon which establishes a π-stacking interaction with an imidazole-CH 198 
of His50 adjacent to the carbohydrate binding site (Figure 1A).[87–89] However, the specificity for 199 
further variations appears relaxed and changing substituents at the phenyl aglycon did not lead to 200 
significant potency improvements. As an alternative approach to the generally employed glycosides of 201 
unmodified galactose residues in LecA ligands, we have embarked on the modification of the galactose 202 
residue itself. A cysteine residue in the carbohydrate binding site of LecA was targeted with the aim to 203 
develop a covalent lectin inhibitor using a small electrophilic headgroup in a modified galactose.[32] 204 
Despite the fact that covalent inhibitors are widespread for many other protein classes, epoxide 5 (Figure 205 
2) was established as the first-in-class covalent lectin inhibitor. Due to its moderate affinity towards 206 
LecA (IC50 = 64 µM), the molecule was converted into a tool compound after synthetic derivatization 207 
and conjugation to fluorescein enabling the visualization of P. aeruginosa biofilm aggregates by 208 
confocal fluorescence microscopy.[32] 209 
 210 
The second P. aeruginosa lectin LecB also forms a homotetrameric quarternary structure, binds broadly 211 
to fucosides and mannosides and the highest affinity was determined for Lewis blood group 212 
antigens.[17,90] In contrast to LecA, the protein sequence of LecB varies among clinical isolates and 213 
two important types occurring in the clinical isolates PAO1 and PA14 have been identified as 214 
representative for all studied isolates.[18,91] Despite the observed amino acid sequence differences in 215 
LecB between strains, its carbohydrate binding specificity is conserved, underpinning the suitability of 216 
LecB as a drug target with conserved specificity among all isolates. Also for LecB, multivalent inhibitors 217 
have been the first choice for inhibition.[28,78] However, due to a sterically more distant and less 218 
favorable orientation of binding sites in LecB compared to LecA, the obtained multivalent ligands could 219 
not achieve a comparable boost in affinity. Nevertheless, two types of multivalent ligands carrying 220 
fucosides stand out of the very broad field: tetravalent glycopeptide dendrimer 6 (IC50 = 140 nM, Figure 221 
2) was able to efficiently prevent biofilm formation of P. aeruginosa at a concentration of 20 µM in 222 
vitro;[33] furthermore, a calixarene carrying four fucose residues was tested in an infection model in 223 
mice.[79] This compound significantly reduced the number of bacteria colonizing lung and spleen, but 224 
was unable to inhibit bacterial biofilms in vitro at a concentration of 100 µM despite its high affinity at 225 
the target (Kd = 48 nM).  226 
 227 
To overcome the intrinsic disadvantages associated with large molecules and multidirectional valency 228 
in biofilm formation, we have used the small molecule LecB ligand mannose as a starting point for the 229 
rational design of monovalent biofilm targeting glycomimetics.[92] These compounds exhibited rather 230 
good target binding potency (Kd = 3 - 20 µM) and prevented bacterial adhesion to a glycosylated surface 231 
at 100 µM. Further optimization[93] and removal of the anomeric center [94] finally yielded C-232 
glycosidic inhibitors of LecB (e.g., 7, Figure 2) with good target binding potency (Kd = 290 nM) and 233 
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very long receptor residence times (t1/2 = 28 min).[34] Glycomimetic 7 showed approx. 85% inhibition 234 
of biofilm growth in vitro at 100 μM, which contrasts the lack of antibiofilm activity of the natural LecB 235 
binder methyl α-L-fucoside, despite its very high target binding affinity (Kd = 430 nM). Furthermore, 236 
glycomimetic 7 is orally bioavailable which is not possible for large multivalent molecules. 237 
 238 
Shiga and cholera toxins are bacterial proteins responsible for severe symptoms in gastrointestinal 239 
infections. These so-called AB5 toxins consist of one catalytic A-subunit and five lectin-like B-subunits 240 
(Figure 1B) which are responsible for the binding of the complex to the host cell surface in the gut. 241 
Inhibition of the B-subunits and thereby preventing adhesion is a potential treatment strategy.[95]  242 
 243 
Shiga toxins (Stxs) are produced by Shigella dysenteriae and some enteropathogenic E. coli strains, e.g. 244 
enterohemorrhagic E. coli (EHEC). Kitov et. al designed the pentavalent ligand STARFISH to match 245 
the carbohydrate binding sites of the five B-subunits with subnanomolar inhibitory activity against 246 
Shiga-like toxins I and II (Stx1 and Stx2).[96] A modified version of STARFISH, called DAISY, 247 
improved the in vivo activity and provided full protection against the toxins when administered 248 
simultaneously in a mouse model despite its lower target binding potency.[97] However, further 249 
development of DAISY-based inhibitors appears halted (no further publications) since the compound 250 
proved ineffective in a treatment scenario, i.e. drug administration after infecting mice with the Shiga 251 
toxin producing strain E. coli O91:H21. Nishikawa et al. designed a series of carbosilane dendrimers 252 
called SUPERTWIG. The most potent compound of the series was able to completely neutralize Stxs in 253 
the blood stream and protect mice against a fatal dose of the Shiga toxin producing strain E. coli 254 
O157:H7 even when administered after establishment of infection.[98] The rather complex synthesis of 255 
multivalent-trisaccharide inhibitors is hindering further clinical development.  256 
 257 
From a peptide library, the branched proline and arginine rich high molecular weight peptide Ac-PPP-258 
tet was identified to bind to Stx2 B-subunit and inhibit Stx2 cytotoxicity.[35] This peptide affects the 259 
intracellular transport of Stx2 and protected mice from a fatal dose of E. coli O157:H7 even when 260 
administered after an established infection; this molecule further protected rabbit intestines ex vivo 261 
against the toxic effect of Stx2.[35,99] Recent efforts include the synthesis of sugar-amino acid hybrid 262 
polymers with highly clustered globotriaosyl residues that showed low micromolar affinities to both 263 
Stxs with the ability to neutralize the toxic effects on Vero cells.[100]  264 
 265 
Vibrio cholerae produces cholera toxin where each B-subunit (CTB) has two binding sites – one primary 266 
binding site recognized by the ganglioside GM1 and a secondary low affinity site recognized by 267 
fucosylated glycans.[101] A number of derivatives mimicking the terminal galactose from GM1 has been 268 
screened and m-nitrophenyl α-D-galactoside and 3,5-disubstituted phenylgalactosides were identified 269 
as monovalent CTB inhibitors.[102,103] Numerous multivalent inhibitors targeting the primary site 270 
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with down to picomolar binding affinities (e.g. 8, IC50 = 34 pM, Figure 2)[36] have been developed and 271 
were summarized in a recent review by Kumar and Turnbull.[104] Targeting the fucose binding site as 272 
new strategy was reported by Kohler and co-workers who reported inhibition of CTB binding to cell 273 
surfaces with 2’-fucosyllactose and a fucosylated polymer.[105] 274 
 275 
 276 

 277 
Figure 2: Inhibitors targeting lectins of pathogenic bacteria in E. coli (1-3), P. aeruginosa (4-7), and 278 
toxins of V. cholerae (8). 279 
 280 
 281 

Viral Lectin Inhibitors 282 

Viral infections are difficult to treat, control and prevent. Frequent antigen variation, for which the 283 
influenza virus is a perfect example, prevents efficient protection and virus clearance by the human 284 
immune system. In many viruses, lectin-carbohydrate interactions are crucial for an efficient infection 285 
of the host. Hemagglutinin is the sialic acid binding lectin on the surface of the influenza viral envelope 286 
and plays a key role in the host cell-virus interaction. Sialic acids are defined as a family of acidic sugars 287 
with a nine carbon atom backbone and the most abundant member found in vertebrates is N-288 

O

HO
OH

OH

HN

O

K

P
L

K
FL

P

K
I

K

H

I
K

I

NH2OC

K

HN O

O

HO
HO

HO

O

HO
HO

HO

HN O

K
P

L
K

F

L
P

K
NH

O

O

OH

HO
HOHO

1

O

N
H

HO

2

O

OH

HO
HOHO

S

N

O

O

HO

HO

OH

AcHN

O CF3

H
N

S
O

O

3

O
HO

HO

O

HO

O

5

O

HO

HO

OH

HO

O N

NN
OHO

OH
N

NN

OH

N

NN
O

OH

OH
HO

N

NN
O O

OH

HOHO

HO

4

O

HO
OH

OH

6

O

HO
OH

OH

H
N S

O

O
S

7

O

HO

HO

OH

HO

O
O

HO OH

NHAc
O

O
O

OH

HO
O

O

NHAc

OH

-O2C

HO

HOHO

O
HO

OH

OH

N
Ac

N N
N

O

NH

O

NH

O

O

O

O

4

3

R =

CO2Me

R

R O
HN

O

R
HN

O
O

HN

HN
O

R
HN

O
O

HN
O

8



 13 

acetylneuraminic acid (9, Neu5Ac, Figure 3).[106] Because the binding interaction of one monomeric 289 
hemagglutinin to sialylated glycans is weak (Kd > 1 mM)[107], trimerization of hemagglutinin on the 290 
viral envelope and a high sialic acid density on the host cell lead to an increased avidity. This binding 291 
event then triggers the internalization of the virus by endocytosis.[108] Therefore, inhibition of the 292 
hemagglutinin-sialic acid interaction could yield prophylactic as well as therapeutic treatments of an 293 
influenza virus infection. 294 
 295 
For this purpose, Strauch et al.[42] developed a trimeric influenza neutralizing protein, targeting the 296 
hemagglutinin receptor binding site. This protein was designed to mimic the key interactions of broadly 297 
neutralizing antibodies and its optimization led to a highly avid protein with a trimeric binding mode 298 
and nanomolar apparent Kd values. In vivo, using an H3 HK68 influenza infection mouse model, 299 
prophylactic and therapeutic treatment significantly protected mice from establishing disease and weight 300 
loss. Unfortunately, this designed protein does not show broad spectrum activity since it does not bind 301 
to the pathogenic ‘bird flu’ subtype H5N1. Limitations in high scale production and price, together with 302 
challenging pharmacokinetic properties will impact on its commercial use as an anti-influenza drug.  303 
 304 
A recent review by Li, Ma and Wang describes a wide range of chemical scaffolds and strategies to 305 
inhibit the hemagglutinin - host cell interaction. Mostly, trimeric sialosides are presented as binders to 306 
the receptor binding site.[109]  307 
 308 
2,3-Sialyllactose (2,3-SL) conjugated to three way junction (3WJ) DNA, with each DNA strand 309 
presenting one, three or five 2,3-SL molecules complementary to the hemagglutinin trimer geometry 310 
was reported by Yamabe et al..[40,41] Hemagglutinin inhibition revealed 3WJ DNA with three sialic 311 
acid residues per arm in compound 10 as best inhibitor with a Ki

 = 0.25 µM, which corresponds to an 312 
80’000-fold increase compared to monomeric 2,3-SL and an 8-fold increase compared to 3WJ DNA 313 
with only one sialic acid per strand. Surprisingly, 3WJ DNA presenting 5 sialic acid per strand led to a 314 
reduction in activity (Ki

HAI > 4.0 µM) which probably originates from an altered orientation of the 315 
carbohydrate epitopes induced by steric hindrance. In contrast to the neuraminidase labile O-linked 10, 316 
the more stable thio-linked sialic acid derivative 11 was synthesized as a follow up. For 11, an increased 317 
stability towards influenza neuraminidase present on the viral envelope was observed, while its activity 318 
was retained. However, in presence of the full virus both derivatives, i.e. O- and S-glycoside, were stable 319 
under the conditions tested. Another approach using a macromolecular scaffold by Nagao et al. yielded 320 
a trimeric star-shaped glycopolymer presenting 6’-sialyllactose on each of the three arms, synthesized 321 
by reversible addition-fragmentation chain transfer polymerization.[110] The degree of polymerization 322 
dictated the length of each arm. Hemagglutinin inhibition clearly depended on the arm-length, resulting 323 
in a Ki = 21 µM for their best glycopolymer. 324 
 325 
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Conjugation of sialic acid or ascorbic acid derivatives onto pentacyclic triterpenes by Zhou and co-326 
workers[37,38] was inspired by the broad antiviral activity of Dipsacus asperoides triterpenes and the 327 
corresponding synthetic leads.[39] In both cases, conjugation to betulinic acid as in 12 led to a strong 328 
reduction of infection by influenza A/WSM/33 in MDCK cells. Cytotoxicity of the triterpenes was also 329 
reduced by conjugation to sialic acid or ascorbic acid and a hemagglutination assay and SPR 330 
experiments with immobilized hemagglutinin suggested hemagglutinin as the putative target (Kd = 17 331 
µM for the sialic acid conjugate, Kd = 8.0 µM for the ascorbic acid conjugate). Interestingly, the synthetic 332 
2,3-di-O-benzyl ascorbic acid intermediate showed a higher affinity for hemagglutinin (Kd = 3.78 µM) 333 
and improved inhibition of viral plaque formation (IC50’s of 8.7 µM vs. 41.3 µM). 334 
 335 
Small molecules possess superior pharmacokinetic properties for drug development than the rather large 336 
structures described above. Kadam and Wilson[111] identified the common buffer molecule CHES (13) 337 
by X-ray crystallography in complex with hemagglutinin. The molecule’s binding mode with 338 
hemagglutinin mimics the one of sialic acid and its sulfonic acid superimposes with the carboxylate of 339 
sialic acid in the complex. Furthermore, the cyclohexyl moiety of CHES forms a CH-π interaction with 340 
W153 of hemagglutinin which is normally established by the N-acetyl group of sialic acid. As binding 341 
of CHES, although in slightly different binding modes, was confirmed for H3- and H5-hemagglutinin, 342 
Kadam and Wilson proposed this non-carbohydrate molecule as a starting point for fragment growing 343 
to overcome its very low affinity (Kd > 20 mM) in the discovery of new types of hemagglutinin 344 
inhibitors. 345 
 346 
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 347 

 348 
Figure 3: Inhibitors of influenza hemagglutinin: NeuNAc (9), macromolecular sialylated three way 349 
junctioned DNA 10 and 11 and small molecules 12-13; or. Norovirus spike protein can be blocked using 350 
the trisaccharide 2’-fucosyl lactose 14. 351 

 352 
The human parainfluenza virus causes respiratory tract diseases in children and elderly patients. In 353 
contrast to other influenza viruses, its multifunctional hemagglutinin-neuraminidase protein possesses 354 
both receptor-binding (hemagglutinin-function) and receptor-processing (neuraminidase-function) 355 
functionalities in one binding site.[112] Usually, lectins are defined as carbohydrate binding proteins 356 
without catalytic activity. However, this multi-functionality makes this parainfluenza virus protein an 357 
interesting topic for this review. Von Itzstein and co-workers synthesized a set of enzymatic 358 
intermediate-like N-acylated Neu-2-en and substrate-like N-acylated 2,3-difluoro-Neu derivatives to 359 
block both functionalities with a single molecule.[43,44] Especially the N-isobutyramido Neu-2-en 360 
derivatives showed potent hemagglutinin inhibition (IC50 = 1.15 µM) as well as inhibition of 361 
neuraminidase activity and virus growth. 362 
 363 
Norovirus, a worldwide cause of mild to severe acute gastroenteritis, can lead to life-threatening 364 
infections for pediatric and geriatric patients and outbreaks, especially in day care centers or nursing 365 
homes, which are particularly problematic. To date, therapy of norovirus infections is only supportive 366 
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and limited to reversal of dehydration and loss of electrolytes.[113] Thus, to control and prevent 367 
outbreaks, new drugs are needed. The human norovirus capsid protein P domain interacts with human 368 
blood group antigens (HBGA) and plays an important role in infection.[114] This virus-host interaction 369 
can be blocked by human milk oligosaccharides such as 2’-fucosyl lactose (14, 2’-FL) as shown by 370 
Hansman and co-workers.[45,46] The very high concentrations of 2’-FL needed to inhibit the interaction 371 
of virus like particles with HBGA in vitro (IC50 = 13 - 50 mM), could be achieved because of the low 372 
toxicity of 2’-FL, its metabolic stability and low gastrointestinal absorption.[115] Indeed, 2’-FL is a 373 
major constituent of human milk with a concentration in the mM range and has been postulated to 374 
prevent infections in breast-fed newborns.[116] Another commonly used and safe food supplement, 375 
citrate, was shown to bind norovirus in a HBGA-like manner.[47]  376 
 377 
 378 
Mammalian Lectin Antagonists 379 
 380 
There are numerous mammalian lectins and the three important classes, siglecs, galectins and the C-381 
type lectins, are currently addressed in chemical biology and medicinal chemistry. Sialic acid-binding 382 
immonoglubin-like lectins, siglecs, are cell-surface receptors, mainly expressed by cells of the immune 383 
system. They are involved in various processes ranging from self-/non-self discrimination to regulating 384 
inflammation caused by damage- or pathogen-associated molecular patterns (DAMP/PAMP).[117,118] 385 
Galectins, a family of soluble secreted lectins with 14 members, generally bind to β-galactosides.[119] 386 
Their functions are diverse and comprise mediation of cell-cell interactions, cell-matrix adhesion and 387 
transmembrane signaling.[120–122] C-type lectins are the largest and most diverse lectin family which 388 
share a conserved protein fold. The name giving Ca2+-ion present in all carbohydrate recognizing family 389 
members directly mediates the binding to the glycan ligand.[7] Only a few examples exist for which Ca2+ 390 
is dispensable for carbohydrate recognition with dectin-1 being the most prominent example. The C-391 
type lectin receptor family in mammals contains 17 members and many are part of innate 392 
immunity.[123,124] 393 
 394 

Langerin, DC-SIGN 395 
All cells of the innate immune system express a variety of pattern recognition receptors (PRR) such as 396 
toll-like receptors, NOD-like receptors and C-type lectin receptors, which allow the orchestration of an 397 
appropriate biological response to an incoming microbial threat. These PRRs are specialized to 398 
recognize PAMPs such as bacterial cell wall structures, fungal polysaccharides, the viral envelope and 399 
foreign RNA/DNA.[7,8] The signaling cascades initiated by these recognition events as well as the 400 
antigen uptake and processing pathways eventually lead to activation of cells of the adaptive immune 401 
system and hence are central elements bridging these two arms of immunity. For example, PAMPs 402 
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recognized and processed by dendritic cells can lead to differentiation of CD4+-cells into T-helper 403 
cells.[123,126] Important C-type lectin receptors are langerin, DC-SIGN and dectin-1.[123]  404 
 405 
The homotrimeric protein langerin is expressed on Langerhans cells in epithelial and mucosal tissues 406 
and binds to D-mannose, L-fucose, and D-GlcNAc as well as sulfated D-galactose. Langerin mediates 407 
the uptake of Yersinia pestis and influenza A virus amongst others in host infection.[7,8] Capitalizing 408 
on these carbohydrate-mediated antigen uptake and processing pathways, langerin has also been 409 
described as an attractive target for targeted drug-delivery approaches to Langerhans cells.[129,130] 410 
This raised the interest in specific langerin ligands and for example Rademacher et al. reported the 411 
discovery of thiazolopyrimidines as murine langerin antagonists, revealing the first allosteric inhibition 412 
of a mammalian lectin.[48] Optimization of the initial hit 15 (Figure 4) was found beneficial at position 413 
6 and led to up to 10-fold lower Kd and IC50-values (Kd (15) = 0.7 mM; IC50 = 0.6 mM). Overall, a large 414 
series of langerin inhibitors was presented with IC50 values ranging in the two digit micromolar range.  415 
Furthermore, it is well known that langerin has high affinity for sulfated poly- or large oligosaccharides, 416 

e.g. heparin (Kd = ~2.4 nM). As the binding affinity is electrostatically driven, no binding was detected 417 
with pH values below 4 or at high salt concentrations above 0.5 M.[131] A screening for langerin 418 
binding molecules revealed a sulfonamide of glucosamine as weakly binding langerin ligand.[132,133] 419 
Based on this screening hit the modified phospholipids 16 and 17 were synthesized with the aim to 420 
produce glycomimetic modified liposomes for langerin targeting. These were tested against Langerin+, 421 
DC-SIGN+ or Dectin-1+ Raji cells. Liposomes consisting of mannosylated phospholipid 17 bound 422 
specifically to DC-SIGN+ cells and those consisting of sulfonamide 16 specifically to Langerin+ cells. 423 
Intracellular trafficking of the langerin targeting liposomes consisting of 16 was then observed in 424 
Langerin+ COS-7 cells by confocal microscopy.  425 
 426 
Tetrameric DC-SIGN is expressed by myeloid dendritic cells and macrophages. Since DC-SIGN shares 427 
the same EPN amino acid motif with langerin, both proteins recognize similar monosaccharide ligands. 428 
While langerin was reported to be protective against HIV infections[134], DC-SIGN promotes viral 429 
dissemination via a process called trans-infection. Targeting DC-SIGN is therefore of interest to stop 430 
the transmission of HIV.[135]  431 
 432 
One common approach to increase affinity for DC-SIGN is the multivalent presentation of 433 
monosaccharide ligands. Following such an avidity-driven strategy, a dodecavalent fuco-dendrimer with 434 
a 420-fold potency increase compared to fucose was reported.[136] However, unspecific binding to 435 
langerin due to its similar binding specificity imposes a selectivity issue. GlcNAc is recognized by both 436 
C-type lectins but sulfation of position 6 and replacement of the N-acetyl group by a N-sulfate led to a 437 
favored recognition of the negatively charged compound 18 by langerin.[125] The development of 438 
positively charged amino species in the pseudo-1,2-mannobioside 19 favored the selectivity towards 439 
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DC-SIGN (IC50 = 254 µM; langerin (IC50 > 4400 µM).[125] Pseudo-1,2-mannobiosides were shown to 440 
bind to the carbohydrate recognition domain in DC-SIGN using X-ray crystallography.[137] As an 441 
alternative approach to generate specificity, a recent report highlighted the presence of five secondary 442 
binding sites on DC-SIGN. These sites recognize drug-like compounds unrelated to carbohydrates, and 443 
hence constitute a potential starting point for future development.[138]  444 
 445 
Dectin-1, a mammalian lectin of the innate immune system, recognizes "-glucans found on fungal cell 446 
walls and is able to function as a PRR in fungal-infection.[124] Liposomes carrying the currently used 447 
antifungal drug amphotericin B intercalated into the lipid membrane reduce the antifungal’s toxicity 448 
compared to detergent-solubilized drugs. Coating of these liposomes with dectin-1 for the specific 449 
targeting towards fungal cells showed a 200-fold higher affinity to those cells then untargeted 450 
liposomes.[139] These dectin-modified delivery vehicles also reduced growth and viability of the mold 451 
Aspergillus fumigatus with higher efficiency and thus provide a new opportunity to fight those resistant 452 
and difficult to treat infections. 453 
 454 

Selectins 455 
Selectins are a subfamily of the C-type lectins consisting of three single-chain transmembrane 456 
glycoproteins, which are found on endothelial cells (E-selectin or CD62E), leukocytes (L-selectin or 457 
CD62L) and platelets (P-selectin or CD62P). They are involved in constitutive lymphocyte homing, 458 
chronic and acute inflammation processes and their minimal common binding epitope is the blood group 459 
antigen sialyl Lewis X (sLeX).[140] 460 
 461 
Based on the bioactive conformation of the tetrasaccharide sLex for E-selectin, this carbohydrate lead 462 
was successively optimized in a series of papers from Ernst and co-workers.[141–145] NMR screening 463 
of fragments allowed the identification of a second site binder and upon merging with the first site sLex 464 
mimic, 30 nM lectin antagonists were obtained from a 1 mM lead.[146] Subsequent addressing of the 465 
additional sulfate-binding domain in P-/L-selectins led to the successful pan-selectin antagonist 466 
Rivipansel (GMI-1070, 20) out of the development program by Ernst, Magnani et al. that started in the 467 
mid-1990s, despite the common fashion to drop selectin research in pharmaceutical industry in the early 468 
2000s.[147] Since June 2015, Rivipansel is in clinical phase III studies against vaso-occlusive anemia 469 
in hospitalized subjects with sickle cell disease (trial end date: June 2019, clinicaltrials.gov Identifier: 470 
NCT02187003). 471 
 472 
Mincle 473 
Mincle has been identified as a C-type lectin receptor of the innate immune system with glycolipid 474 
binding specificity that plays an important role in infection by mycobacteria. Mincle binds the 475 
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mycobacterial glycolipid trehalose dimycolate[20,21] and has recently been addressed by a number of 476 
groups describing synthetic molecules based on the bacterial glycolipid.[148–151] 477 
 478 

Galectins 479 
Galectin-3, the best described member of the galectin family, is involved in many biological processes, 480 
inter alia, cell growth, cell adhesion and apoptosis. Consequently, it plays an important role in many 481 
diseases, among them are cancer, inflammation, fibrosis, heart disease and stroke.[152–154] For that 482 
reason, galectin-3 became an important drug target, recently reviewed by Marino, Rabinovich and co-483 
workers.[11]  484 
 485 

Symmetric C3-aryltriazolyl-substituted thiodigalactosides have shown high affinities for galectin-3 486 
down to Kd = 1-2 nM. However, most of the compounds also bound to galectin-1 raising concerns about 487 
the specificity (e.g.: 21, Kd (galectin-1) = 69 nM; Kd (galectin-3) = 2.3 nM). After combining C3 488 
aryltriazolyl groups with O3-coumaryl groups into asymmetrical thiodigalactosides the selectivity 489 
towards galectin-3 increased: specificity of compound 22 towards galectin-3 was achieved with a high 490 
affinity (Kd (galectin-1) = 340 nM; Kd (galectin-3) = 7.5 nM).[155] Dicoumaryl digalactoside 23 491 
(Kd (galectin-1) = 16 µM; Kd (galectin-3) = 91 nM) was then analyzed in vivo in mice against bleomycin-492 
induced lung fibrosis. At a dose of 3.5 mg/kg of digalactoside 23 the fibrosis score could be reduced but 493 
no effect on the inflammatory score was observed.[156] TD139 (24) is a derivative of 21 with a single 494 
fluorine atom in meta-position of the phenyl rings which is in clinical trials phase II as a galectin-3 495 
inhibitor in idiopathic pulmonary fibrosis since February 2019 using the pulmonary route of 496 
administration (www.clinicaltrials.gov, NCT03832946).[157,158] Oral administration of these 497 
disaccharides is impeded by their poor membrane permeability. Currently, various research groups are 498 
optimizing this property and a new galectin-inhibitor class with only one sugar residue and low 499 
nanomolar affinity was discovered, e.g., 25, Kd = 37 nM.[159] 500 

 501 

Siglecs 502 
A number of siglecs have attracted the attention in the past decades and several antibodies targeting 503 
siglecs are approved drugs or in clinical trials.[160,161] Many publications report the development of 504 
antagonists for siglec-4, also called myelin-associated glycoprotein (MAG).[162–164] This protein is 505 
important for glial scar formation after central nervous system lesions and inhibition of MAG is 506 
considered one therapeutic approach to prevent scar formation and enable axonal regeneration.[165,166]  507 
 508 
Siglec-2 (CD22) is a target receptor in anti-cancer therapy of lymphoma, leukemia as well as in the 509 
treatment of autoimmune diseases such as lupus and rheumatoid arthritis.[167] Biphenylcarboxamidated 510 
sialic acid derivative 26 (IC50 = 2 nM) was developed with an over 500.000-fold stronger binding affinity 511 
compared to  the minimal siglec ligand αMe-Neu5Ac (27, IC50 = 1.5 mM) against siglec-2.[168] Despite 512 
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the fact that this protein is a monomeric protein, di- or trivalent N-glycans show a very high affinity in 513 
the low nM/ high pM range. The group by Paulson et al. suggest that this high affinity in their assays 514 
originates from simultaneous binding to several CD22 lectins clustering on the cell surface within 30-515 
50 Å to each other.[169]  516 
 517 

 518 
Figure 4: Allosteric (15) and carbohydrate-binding site directed (16-27) mammalian lectin antagonists. 519 

 520 
 521 
Conclusions 522 
 523 
Lectins are a large family of proteins that are present in each domain of life. These carbohydrate-binding 524 
proteins possess numerous functions, both intracellularly and outside the cell. Research towards lectin 525 
antagonists has developed rapidly over the past two decades focusing on lectins from selected fields, 526 
mainly related to immunity and infection involving mammalian lectins and those from pathogenic 527 
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bacteria and viruses. The largest block of literature focusses on the assembly of native carbohydrates 528 
onto a plethora of different multivalent scaffolds. With some important exceptions discussed here, these 529 
publications usually center around the chemical synthesis and compounds are only evaluated in a target 530 
binding assay and not employed further for questions of chemical biology and drug research. 531 
 532 
However, in the last decade, a number of strategies towards glycomimetic lectin antagonists has been 533 
published that led to drug-like structures which proved equally useful in chemical biology research and 534 
early preclinical drug discovery. Antibacterial glycomimetic drugs applied alone or in combination with 535 
conventional antibiotics will provide new effective therapies for multiresistant bacterial infections. And 536 
due to an increasing resistance towards established drugs and the absence of effective drugs against 537 
several, so far untreated viruses, viral lectins have become attractive targets in recent years and further 538 
research will likely yield new tools for chemical biology and drug therapy. Despite the intrinsic 539 
difficulty of developing probes/therapeutics for these low affinity carbohydrate-protein interactions, the 540 
field is developing rapidly and the first lectin antagonist currently in phase III clinical trials is GMI-541 
1070 (20, Figure 4).  542 
 543 
Many new lectins are being uncovered every year providing a large playground for new lectin 544 
antagonists for chemical biology and potentially as therapeutic targets. Lectins from other organisms, 545 
such as fungi or bacteria that are not pathogenic to humans are active areas of research. It will be 546 
interesting to probe for example fungal lectins[22,23,170,171] with a distinct specificity for methylated 547 
glycans or those of bacteria[172–174] that live in symbiosis with nematodes and kill invaded insects. 548 
Furthermore, a large number of bacterial adhesins in pathogenic bacteria are being uncovered, e.g. the 549 
Burkholderia lectins[175–178] or carbohydrate binding adhesins from Salmonella enterica[179], and 550 
thus, there is a bright future for the chemical biology of lectin antagonists ahead. 551 
 552 
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