
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Article
Severe COVID-19 Is Marked by a Dysregulated
Myeloid Cell Compartment
Graphical Abstract
Highlights
d SARS-CoV-2 infection induces profound alterations of the

myeloid compartment

d Mild COVID-19 is marked by inflammatory HLA-DRhiCD11chi

CD14+ monocytes

d Dysfunctional HLA-DRloCD163hi and HLA-DRloS100Ahi

CD14+ monocytes in severe COVID-19

d Emergency myelopoiesis with immature and dysfunctional

neutrophils in severe COVID-19
Schulte-Schrepping et al., 2020, Cell 182, 1419–1440
September 17, 2020 ª 2020 Elsevier Inc.
https://doi.org/10.1016/j.cell.2020.08.001
Authors

Jonas Schulte-Schrepping, Nico Reusch,

Daniela Paclik, ...,

Antoine-Emmanuel Saliba,

Leif Erik Sander, Deutsche COVID-19

OMICS Initiative (DeCOI)

Correspondence
j.schultze@uni-bonn.de

In Brief

Analysis of patients with mild and severe

COVID-19 reveals the presence of

dysfunctional neutrophils in the latter that

is linked to emergency myelopoiesis.
ll

mailto:j.schultze@uni-bonn.de
https://doi.org/10.1016/j.cell.2020.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2020.08.001&domain=pdf


ll
Article

Severe COVID-19 Is Marked
by a Dysregulated Myeloid Cell Compartment
Jonas Schulte-Schrepping,1,23 Nico Reusch,1,23 Daniela Paclik,2,23 Kevin Baßler,1,23 Stephan Schlickeiser,2,3,23
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SUMMARY
Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of
patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild
forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregu-
lated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-
sequencing and single-cell proteomics of whole-blood and peripheral-bloodmononuclear cells to determine
changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109
individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signa-
ture were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors,
as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our
study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals
profound alterations in the myeloid cell compartment associated with severe COVID-19.
INTRODUCTION

Clinical presentations of COVID-19 are highly variable, and while

the majority of patients experiences mild to moderate symptoms,

10%–20% of patients develop pneumonia and severe disease

(Huang et al., 2020a;Wang et al., 2020; Zhou et al., 2020a). Clinical
C

deterioration with respiratory failure and acute respiratory distress

syndrome (ARDS) typicallydevelops in thesecondweekofdisease.

This kineticmay suggest a role for secondary immune responses in

the development of severe COVID-19 (Ong et al., 2020). However,

the exact mechanisms that govern the pathophysiology of the

different disease courses of COVID-19 remain ill-defined.
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Single-cell studies of bronchoalveolar lavage samples have

suggested a complex dysregulation of the pulmonary immune

response in severe COVID-19 (Chua et al., 2020; Liao et al.,

2020). Overall, systemic inflammation is linked to an unfavorable

clinical course of disease and the development of severe

COVID-19 (Giamarellos-Bourboulis et al., 2020; Lucas et al.,

2020; Ong et al., 2020). SARS-CoV-2 infection induces specific

T cell and B cell responses, which is reflected by elevation of

SARS-CoV-2 peptide-specific T cells (Braun et al., 2020; Grifoni

et al., 2020) and the production of SARS-CoV-2-specific anti-

bodies (Long et al., 2020; Ni et al., 2020; Robbiani et al., 2020). Pa-

tients with severe COVID-19 have high systemic levels of inflam-

matory cytokines, particularly interleukin (IL)-6 and IL-1b (Chen

et al., 2020; Giamarellos-Bourboulis et al., 2020; Lucas et al.,

2020;Onget al., 2020),whereas interferon (IFN) responses appear

blunted, as shown by whole blood transcriptomics (Hadjadj et al.,

2020) andplasmaprofiling (Trouillet-Assant et al., 2020). A number

of studies and regular clinical observations indicate an increase of

neutrophils and a decrease of non-classical (CD14loCD16hi)

monocytes in severe COVID-19 (Hadjadj et al., 2020; Merad and

Martin, 2020; Sanchez-Cerrillo et al., 2020). Profound immune

dysregulation is commonly observed in severe infections and

sepsis, characterized by a progression from hyperinflammatory

states to immunosuppression (Remy et al., 2020; Ritchie and Sin-

ganayagam, 2020), and similar mechanisms have been proposed

for severe COVID-19 (Giamarellos-Bourboulis et al., 2020). Yet,

comprehensive insights into the immunopathology of severe

COVID-19 are still missing. Exacerbated immune responses

played amajor role in the pathophysiology of SARS, leading to se-

vere lung injury and respiratory failure (Perlman and Dandekar,

2005). Mitigation of immunodysregulation is therefore viewed as

amajor therapeutic avenue for the treatment andprevention of se-

vere COVID-19 (Dimopoulos et al., 2020; Jamilloux et al., 2020). In

support of this view, a recentmulticenter study reported that dexa-

methasone treatment significantly reduced mortality in hospital-

izedpatientswithCOVID-19,particularly inpatientsonmechanical

ventilation (Horbyetal., 2020).Previousstudiesofperipheralblood

mononuclear cell (PBMC) transcriptomes in a small number of pa-

tients with COVID-19 revealed changes in several cellular com-

partments, includingmonocytes, natural killer (NK) cells, dendritic

cells (DCs), and T cells (Lee et al., 2020; Wilk et al., 2020).
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The heterogeneity of clinicalmanifestations and the complexity

of immune responses to COVID-19 highlight the need for

detailed analyses using high-resolution techniques and well-

characterized clinical cohorts. We hypothesized that distinct re-

sponses, particularly within the innate immune system, underlie

the different clinical trajectories of COVID-19 patients (Chua

et al., 2020; Kuri-Cervantes et al., 2020; Mathew et al., 2020;

McKechnie and Blish, 2020). Here, we used single-cell transcrip-

tomics and single-cell proteomics to analyze immune responses

in blood samples in two independent cohorts of COVID-19

patients.

Activated HLA-DRhiCD11chiCD14+ monocytes were increased

in patients with mild COVID-19, similar to patients with SARS-

CoV-2 negative flu-like illness (‘‘FLI’’). In contrast, monocytes

characterized by low expression of HLA-DR, and marker genes

indicative of anti-inflammatory functions (e.g., CD163 and

PLAC8) appeared in patients with severe COVID-19. The granulo-

cyte compartment was profoundly altered in severe COVID-19,

marked by the appearance of neutrophil precursors due to emer-

gencymyelopoiesis, dysfunctional neutrophils expressing PD-L1,

and exhibiting an impaired oxidative burst response. Collectively,

our study links highly dysregulated myeloid cell responses to se-

vere COVID-19.

RESULTS

Dual Center Cohort Study to Assess Immunological
Alterations in COVID-19 Patients
In order to probe the divergent immune responses in mild versus

severe COVID-19, we analyzed blood samples collected from in-

dependent patient cohorts at two university medical centers in

Germany. Samples from the Berlin cohort (cohort 1) (Kurth

et al., 2020), were analyzed by mass cytometry (CyTOF) and sin-

gle-cell RNA-sequencing (scRNA-seq) using a droplet-based

single-cell platform (10x Chromium), while samples from the

Bonn cohort (cohort 2) were analyzed by multi-color flow cytom-

etry (MCFC) and on a microwell-based scRNA-seq system (BD

Rhapsody). We analyzed a total of 24million cells by their protein

markers and >328,000 cells by scRNA-seq in 242 samples from

53 COVID-19 patients and 56 controls, including 8 patients with

FLI (Figures 1A, 1B, and S1A; Table S1).
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Figure 1. Cohort Definition and Single-Cell Multi-omics Analysis Strategy

(A) Pipeline for control and COVID-19 blood samples of the two cohorts (see also Table S1). Whole blood samples were subjected to red blood cell (RBC) lysis and

processed for CyTOFmass cytometry (two antibody panels), multi-color flow cytometry (MCFC), or scRNA-seq (BD Rhapsody). PBMCs were isolated by density

centrifugation and processed directly or after frozen storage, labeled with cell hashing antibodies and loaded on droplet-based (10x) or microwell-based (BD

Rhapsody) scRNA-seq platforms. Box (bottom left): number of subjects in each cohort. Boxes (on the right): number of samples analyzed with each technique.

(B) Number of samples per technique summarized across cohorts, divided by disease severity according to WHO ordinal scale and by the time after onset of first

symptoms (early: days 0–10, late: >day 11).

(C) UMAP of CD45+ leukocytes, down-sampled to 70,000 cells, from mass cytometry using antibody panel 2 (30 markers, Table S2). Cells are colored according

to donor origin (blue, age-matched controls; gray, FLI; yellow, mild COVID-19; red, severe COVID-19) and major lineage subtypes.

(D) Box andwhisker (10–90 percentile) plots ofmajor cell lineage composition in whole blood from FLI (n = 8), COVID-19 patients withmild (n = 8) or severe disease

(n = 9), age-matched controls measured bymass cytometry (ctrl CyTOF, n = 9) or by flow cytometry (ctrl flow, n = 19) (Kverneland et al., 2016). Kruskal-Wallis and

Dunn’s multiple comparison test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n.a., not available.

See also Figure S1 and Table S3.
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We first characterized alterations of the major leukocyte line-

ages by mass cytometry on whole blood samples from 20

COVID-19 patients collected between day 4 and day 29 after

symptom onset and compared them to 10 age- and gender-

matched controls and 8 FLI patients. We designed two antibody

panels to specifically capture alterations in mononuclear leuko-

cytes (lymphocytes, monocytes, and DCs, panel 1), and in gran-

ulocytes (Table S2, panel 2). High-resolution SPADE analysis

was performed with 400 target nodes and individual nodes

were aggregated into cell subsets based on lineage-specific

markers, such as CD14 for monocytes and CD15 for neutrophils

(Figure S1B). Uniform manifold approximation and projection

(UMAP) analysis revealed distinct clustering of samples from

COVID-19 patients, FLI, and healthy controls, with marked

changes of the monocyte and granulocyte compartment (Fig-

ure 1C). Leukocyte lineages were compared in the earliest avail-

able samples in COVID-19 patients (days 4–13), FLI, and controls

(Figure 1D; Table S1). Because leukocyte counts were not avail-

able for all control samples, we compared the control samples

for CyTOF (‘‘ctrl CyTOF’’) to data from our recently published

healthy control cohorts (‘‘ctrl flow’’) (Kverneland et al., 2016; Sa-

witzki et al., 2020). The proportions of all major lineages were

highly similar, irrespective of the methodology (Figure 1D). Cell

counts of the published cohort could therefore be used as a

reference to report absolute cell counts for leukocyte lineages

in COVID-19 samples. In line with recent reports (Barnes et al.,

2020; Xia et al., 2020), we observed elevated leukocytes and

increased proportions of neutrophils in patients with severe

COVID-19 (Figure 1D), whereas only proportional increases in

neutrophils were evident in FLI and mild COVID-19 patients (Fig-

ure 1D). Total lymphocytes and T cells were strongly reduced in

all COVID-19 and FLI patients, whereas non-classical mono-

cytes were specifically depleted in COVID-19 (Figure 1D).

Increased neutrophils in severe COVID-19 and loss of non-clas-

sical monocytes in both mild and severe disease were validated

in cohort 2 by MCFC (Figure S1C; Tables S1 and S3).

Thus, SARS-CoV-2 infection is associated with lymphopenia

and profound alterations of the myeloid compartment.

Severity-Dependent Alterations of the Myeloid Cell
Compartment in COVID-19
Given the dramatic changes in various immune cell populations

(Figures 1C and 1D),we next assessed their composition and acti-

vation state by droplet-based scRNA-seq in 27 samples from 18

COVID-19 patients (8 mild and 10 severe, cohort 1, Table S1)
Figure 2. scRNA-Seq of PBMC from Patients of the Two Independent

(A) UMAP visualization of scRNA-seq profiles (10x, cohort 1) of 99,049 PBMC fro

samples colored according to cell type classification (Louvain clustering), referen

(B) UMAP shown in (A) colored according to disease severity (yellow, mild COVI

(C) Dot plots of the intersection of the top 20 marker genes sorted by average lo

datasets of both cohorts.

(D) UMAP visualization of scRNA-seq profiles (BD Rhapsody, cohort 2) of 139,848

different time points), coloring as in (A) (see also Figure S2A and Table S4).

(E) Box and whisker plots (25–75 percentile) of percentages of cell subsets of tota

according to the respective cohort of the sample. Dirichlet-multinomial regres

***p < 0.001.

See also Table S1.
collected between day 3 and day 20 after symptom onset. A total

of 48,266 single-cell transcriptomes of PBMCs were analyzed

together with 50,783 PBMCs from publicly available control data-

sets (21 control donors, Table S1). UMAP and high-resolution cell

type classification identified all cell types expected in themononu-

clear compartment of blood with a high granularity in the mono-

cytes, identifying five distinct clusters (clusters 0–4) (Figures 2A

and S2A; Table S4). Monocytes in clusters 0–3 expressed

CD14, and cluster 4 comprised the non-classical monocytes

marked by FCGR3A (encoding CD16a) and low expression of

CD14. Separate visualization of cells in mild and severe cases re-

vealed highly disease severity-specific clusters (Figure 2B). A

distinct subset ofCD14+monocytes (cluster 1) (Figure 2A)marked

by high expression of HLA-DRA, HLA-DRB1, and co-stimulatory

molecule CD83 (Figure S2D), the engagement of which has

been linked to prolonged expansion of antigen-specific T cells

(Hirano et al., 2006), was selectively detected in mild COVID-19

(Figure 2C). In addition, we identified another closely related

CD14+HLA-DRhi monocyte population (cluster 2), which was

characterized by high expression of IFN-stimulated genes

(ISGs). However, upon closer analysis, this cluster was found to

originate from a single donor with mild COVID-19 (Figures 2A–

2C and S2D). Both cluster 1 and cluster 2 expressed high levels

of ISGs IFI6 and ISG15 (Figure S2D). In patients with severe

COVID-19, monocytes showed low expression of HLA-DR and

high expression of alarmins S100A8/9/12 (cluster 3, Figures 2A–

2C and S2D). The most prominent change in severe COVID-19

was the appearance of two distinct cell populations (cluster

5+6), absent in PBMCs of patients with mild COVID-19 and con-

trol donors (Figure 2A). Published markers (Kwok et al., 2020;

Ng et al., 2019) identified clusters 5 and 6 as neutrophils and

immature neutrophils, respectively (Figures 2A and 2B). Immature

neutrophils (cluster 6) expressed CD24, PGLYRP1, DEFA3, and

DEFA4, whereas neutrophil cluster 5 expressed FCGR3B

(CD16b), CXCL8, and LCN2 (lipocalin 2) (Figures 2C and S2A).

Their migration within the PBMC fraction on a density gradient

marked these cells as low-density neutrophils (LDNs).

In the second cohort, PBMCs from 17 COVID-19 patients (8

mild, 9 severe, Table S1), sampled between 2 and 25 days after

symptom onset, and 13 controls, were collected for scRNA-seq

on a microwell-based platform (BD Rhapsody). High-quality sin-

gle-cell transcriptomes for 139,848 PBMCs were assessed and

their population structure was visualized using UMAP (Figure 2D;

Table S4). Data-driven cell-type classification (Aran et al., 2019)

and cluster-specific marker gene expression identified all cell
Cohorts

m 49 samples (8 mild, 10 severe patients, different time points) and 22 control

ce-based cell-type annotation, and marker gene expression (Table S4).

D-19; red, severe COVID-19).

g fold change determined for the indicated myeloid cell subsets in the PBMC

PBMCs (50 samples of 8 mild, 9 severe COVID-19; 14 samples of 13 controls;

l PBMC (per patient). Boxes are colored according to disease group and dots

sion adjusted with the Benjamini-Hochberg method, *p < 0.05, **p < 0.01,

Cell 182, 1419–1440, September 17, 2020 1423
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Figure 3. CD11clo and HLA-DRlo but CD226+CD69+ Monocytes in Severe COVID-19

(A) Heatmap of CyTOF data (antibody panel 1, cohort 1) coveringmonocytes andDCs.Main cell, as defined by the numbers 1 to 12, and individual cell clusters are

displayed in columns and marker identity is indicated in rows. MSI, marker staining intensity respective expression level, significance level for the following

comparisons: (1) controls (ctrl, n = 9) versus COVID-19 (mild and severe, n = 17, first row), (2) mild (n = 8) versus severe (n = 9, second row), (3) FLI (n = 8) versus

(legend continued on next page)
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types expected in the PBMC compartment and revealed addi-

tional clusters and substructures (Figures 2D and S2B). Similar

to cohort 1, monocytes exhibited significant plasticity and were

subclassified into 5 clusters (Figure 2D, clusters 0–4). Disease-

severity-associated changes seen in cohort 1 were validated in

cohort 2 (Figure 2E). Immature and mature neutrophil clusters

were detected in both cohorts (clusters 5–6) and showed near

identical marker gene expression (Figure 2C). Similar to cohort

1, a prominent shift in subpopulation occupancy was observed

in the monocyte clusters (Figures 2D and 2E).

Based on the union of the top 50 genes for monocyte and

neutrophil clusters, we found a high correlation between the

independently defined functional states within the monocyte

compartment, and mature and immature neutrophils in cohort

1 and cohort 2 (Figure S2C). Violin plot representation of impor-

tant marker genes illustrated distinct phenotypic states and un-

derscored the high similarity of the two cohorts (Figure S2D).

Disease-severity-dependent alterations of the monocyte

compartment and the appearance of two LDN populations

were detected in two cohorts of COVID-19 patients.

Predominance of HLA-DRhiCD11chi Inflammatory
Monocytes in Mild and HLA-DRloCD11cloCD226+CD69+

Monocytes in Severe COVID-19
The monocyte compartment is particularly affected by COVID-

19, indicated by a loss of CD14loCD16hi non-classical mono-

cytes (Figures 1C and 1D). Disease-severity-dependent shifts

in monocyte activation were identified by scRNA-seq (Figure 2).

We further explored the phenotypic alterations of the monocyte

compartment using mass cytometry (Table S2, panel 1) on

whole blood samples from COVID-19 patients with a mild or

severe disease (n = 8+9), patients with FLI (n = 8), and age-

and gender-matched controls (n = 9, all collected within cohort

1, Table S1). Unsupervised cluster analysis using 15 surface

antigens and the proliferation marker Ki67 separated the mono-

cyte and DC compartment into 12 main cell clusters (Figures 3A

and 3B). Classical CD14hiCD16� monocytes displayed high

heterogeneity and separated into seven main subclusters.

Most classical monocytes showed high expression of activa-

tion markers CD38, CD95, and CXCR3. The four most prevalent

clusters (1, 2, 5, and 6) varied according to CD62L, HLA-DR,
mild COVID-19 (n = 8, third row), as well as (4) controls (ctrl, n = 9) versus FLI (n =

heatmap). COVID-19 samples collected between days 4 and 13 post-symptom

generalized mixed effects models and multiple comparison adjustment using the

across all clusters/subsets and between-group comparisons.

(B) UMAP of monocytes and DCs, down-sampled to 70,000 cells, (39 markers, Ta

as defined in the table, donor origin (blue, controls; gray, FLI; yellow, mild COVID-1

and CD69.

(C) Box and whisker (10–90 percentile) plots of main monocyte clusters 1, 10

monocytes) determined bymass cytometry (whole blood, cohort 1): controls (n = 9

testing via R multcomp and lsmeans packages adjusted using the Benjamini-H

between-group comparisons.

(D) Box andwhisker (10–90 percentile) plots of CXCR3+, HLA-DRhiCD11chi, and C

controls (n = 9), FLI patients (n = 8), and COVID-19 patients (mild, n = 8; severe,

(E) Boxplot of HLA-DRhiCD11chi monocytes (cohort 2) measured by flow cytome

Unpaired t test.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Tables S1 and S3.
CD11c, and Ki67 expression, with CD62L and HLA-DR

showing a reverse expression pattern (Figure 3A). Cluster 1 dis-

played an activated inflammatory phenotype with high co-

expression of CD11c and HLA-DR (Bernardo et al., 2018; Ja-

nols et al., 2014). In addition, we observed classical monocyte

cell clusters (7, 9, and 10) with high CD226 and CD69 but low

HLA-DR expression and thus signs of altered or alternative

activation (Davison et al., 2017; Reymond et al., 2004; Vo

et al., 2016). Among the HLA-DRlo clusters, particularly cluster

7 showed high expression of CD34 indicative of a more imma-

ture phenotype. In contrast, the majority of CD14hiCD16+ inter-

mediate monocyte cell clusters showed high CD11c and HLA-

DR expression.

Monocytes from COVID-19 patients separated from those of

FLI patients and controls (Figure 3B), mainly based on elevated

CD226 and CD69 expression in COVID-19. Monocytes in mild

and severe COVID-19 clustered separately, and monocytes

from mild COVID-19 clustered closer to monocytes in FLI. FLI

patients and mild COVID-19 contained higher proportions of

HLA-DRhiCD11chi cells (clusters 3 and 11), and total HLA-

DRhiCD11chi monocytes were higher compared to controls and

severe COVID-19, reflecting blunted monocyte activation in se-

vere COVID-19, reminiscent of observations in sepsis (Janols

et al., 2014) (Figures 3A, 3C, and 3D). Increased levels of acti-

vated HLA-DRhiCD11chi monocytes in mild COVID-19 patients

were confirmed by MCFC in cohort 2 (Figure 3E). In severe

COVID-19, we detected increased expression of CD226 and

CD69 (cluster 10) and/or decreased expression of HLA-DR,

and total CD226+CD69+ monocytes were elevated compared

to controls. Cluster 10 expressed high levels of CD10, which is

induced during macrophage differentiation (Huang et al.,

2020b). Thus, an alternative activation pattern of classical mono-

cytes appeared to be COVID-19-specific and was associated

with severe disease. Besides activated lymphocytes, monocytes

also upregulate CD69 expression (Davison et al., 2017), which

promotes tissue infiltration and retention (Cibrián and Sánchez-

Madrid, 2017). Similarly, CD226 expression on alternatively acti-

vatedmonocytes might also promote diapedesis and tissue infil-

tration (Reymond et al., 2004). Together, this activation pattern

may contribute to the reduction of circulating monocytes in

COVID-19.
8) are indicated using a gray scale on top of the heatmap (p value scale next to

onset ( = first day of sample collection per patient). Abundance testing via

Benjamini-Hochberg procedure and a false discovery rate (FDR) cutoff of 5%

ble S2). Cells are colored according to main cell clusters (1 to 12, colors as in A)

9; red, severe COVID-19) and expression intensity of HLA-DR, CD11c, CD226,

(CD14hiCD16� classical monocytes), 11, and 3 (CD14hiCD16+ intermediate

), FLI patients (n = 8), COVID-19 patients (mild, n = 8; severe, n = 9). Abundance

ochberg procedure and an FDR-cutoff of 5% across all clusters/subsets and

D226+CD69+monocytesmeasured bymass cytometry (whole blood, cohort 1):

n = 9). Kruskal-Wallis and Dunn’s multiple comparison tests.

try: COVID-19 (mild, n = 3; severe, n = 7) and age-matched controls (n = 11).
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HLA-DRlo Monocytes Persist in Severe COVID-19
Next, we dissected COVID-19-associated phenotypic alter-

ations of monocytes by scRNA-seq. Marker genes of themono-

cyte clusters derived from Figure 2A showed that mild COVID-

19 associated clusters 1 and 2 were characterized by an ISG-

driven transcriptional program (Figure S3A), and gene ontology

enrichment analysis (GOEA) assigned these clusters to ‘‘type I

interferon signaling pathway’’ (Figure S3B). A monocyte cluster

marked by low expression of HLA-DR and high expression of

S100A12 and CXCL8 (cluster 3, HLA-DRloS100Ahi) was

strongly associated with severe COVID-19 (Figures 2B, S2D,

and S3A). For further in-depth analysis, we subclustered the

monocyte compartment of the PBMC dataset of cohort 2 (Fig-

ures 2D and S3C; Table S1) resulting in 7 subclusters (Fig-

ure 4A). Cluster 1 was marked by high expression of HLA-

DRA and HLA-DRB1 and co-stimulatory molecule CD83 and

was therefore designated HLA-DRhiCD83hi-activated inflam-

matory monocytes (Figures 4A, 4B, S3D, and S3E). We identi-

fied two major clusters (0 and 2) and a smaller cluster (6) with

low HLA-DR expression, which were associated with severe

COVID-19 (Figures 4B, S3D, and S3E). Low HLA-DR expres-

sion is an established surrogate marker of monocyte dysfunc-

tion (Venet et al., 2020) which results in reduced responsive-

ness to microbial stimuli (Veglia et al., 2018), suggesting that

clusters 0 and 6 are composed of dysfunctional monocytes.

Genes of the S100A family were expressed in both HLA-

DRlo clusters (Figure 4B), albeit to a higher degree in cluster

0 (HLA-DRloS100Ahi, e.g., S100A12) (Figures S2D and S3E;

Table S4). Cluster 2 monocytes expressed high levels of

SELL (CD62L) and CD163 (HLA-DRloCD163hi) (Figure 4B),

associated with anti-inflammatory macrophage functions

(Fischer-Riepe et al., 2020; MacParland et al., 2018), as well

as pre-maturation markers like MPO and PLAC8 (Figure 4B),

recently linked to immature monocyte states in sepsis patients

(Reyes et al., 2020). In line with these findings, clusters 0, 2,

and 6 were significantly enriched in a gene signature derived

from sepsis-associated monocytes (Figure 4C) (Reyes et al.,
Figure 4. Disease-Related Longitudinal Changes in Monocyte Transcr

(A) UMAP visualization of monocytes (43,772 cells; from Figure 2C, cohort 2); 46 s

colored according to the identified monocyte clusters (Louvain clustering, Table

(B) Visualization of scaled expression of selected genes (monocyte markers, Fig

monocytes in COVID-19 (HLA-DRloCD163hi, HLA-DRloS100Ahi, and HLA-DRhiCD

(C) AUCell-based enrichment of a gene signature from sepsis-associatedmonocy

scores. Horizontal lines: median of the respective AUC scores per cluster.

(D) Cytokine detection of IL-1b, tumor necrosis factor alpha (TNF)-a, and IL-12 in s

and severe, n = 3) after 8 h in vitro incubation with or without 1 ng/mL LPS. Mea

method, *p < 0.05.

(E) Mapping of monocytes derived from COVID-19 patients (mild early, mild la

monocyte cluster identity.

(F) Cluster occupancy over time for patients with longitudinal scRNA-seq data (m

points of sampling. Red bar, WHO ordinal scale; X, patient deceased. Patient IDs o

patients classified as mild at initial sampling developing severe disease over tim

(G) Time-dependent change of IFI6 and ISG15 expression (violin-plots) inmonocyt

5; severe [red], n = 7), and controls (cohort 1, n = 22, cohort 2, n = 6).

(H) Network representation of marker genes and their predicted upstream tran

transcriptional regulation. Transcription factors (TFs, inner circle) and predicted ta

the scaled expression level across all clusters. Selected TFs and genes labeled ba

defined in (A).

See also Figure S1 and Tables S1 and S4.
2020). Moreover, blood monocytes isolated from COVID-19

patients showed a blunted cytokine response to LPS stimula-

tion, particularly monocytes from patients with severe COVID-

19 (Figure 4D). Accordingly, HLA-DRlo monocyte clusters (0,

2, and 6) were detected almost exclusively in severe COVID-

19 (Figure 4E). We next analyzed time-dependent cluster oc-

cupancies per patient in cohort 2 (Figures 4E and 4F). Acti-

vated HLA-DRhiCD83hi monocytes (cluster 1) were found in

all cases of mild COVID-19, even at late time points (Figures

4E and 4F). In contrast, HLA-DRloCD163hi monocytes (cluster

2) were present mainly early in severe disease, while HLA-

DRloS100Ahi monocytes (cluster 0) dominated the late phase

of disease (Figures 4E and 4F). Violin plots of ISG (Figure S3D)

and visualization of marker genes (Figure S3E) indicated dif-

ferential expression patterns of IFN signature genes in individ-

ual monocyte clusters. To reveal the kinetics of ISG expres-

sion, we plotted the expression of ISG15 and IFI6 in the

complete monocyte population for all patients that had been

sampled at least twice (Figure 4G). Expression levels were

highest at early time points and consistently decreased over

time, clearly indicating that the IFN response in COVID-19 is

inversely linked to disease severity and time (Figures S3F

and S3G). In contrast, decreased expression of HLA-DRA

and HLA-DRB1 in severe COVID-19 is evident early on and

sustained over time.

Transcription factor prediction indicated a STAT signaling-

driven gene expression program in monocytes in COVID-19

(Figure 4H), with additional regulation by CEBPD and

CEBPE, which have been implicated in gene expression pro-

grams of sepsis-associated monocytes (Reyes et al., 2020).

STAT3 was predicted as a specific regulator of genes

enriched in HLA-DRloCD163hi and HLA-DRloS100Ahi mono-

cytes (clusters 2 and 0), in line with their immunosuppressive

phenotype.

Taken together, dynamic changes of monocyte phenotypes

were associated with COVID-19 disease severity and time after

onset of disease.
iptomes

amples from controls (n = 6) and COVID-19 (mild, n = 7; severe, n = 8). Cells are

S4).

ures 2 and S3E) using the UMAP defined in (A). Three main clusters defining

83hi monocytes) indicated by dashed areas.

tes (MS1 cells) (Reyes et al., 2020), violin plots of the area under the curve (AUC)

upernatants of purified monocytes (controls, ctrl, n = 3; COVID-19, mild, n = 3,

n ± standard deviation. Kruskal-Wallis test adjusted with Benjamini-Hochberg

te, severe early, and severe late) onto UMAP from (A), coloring according to

ild, n = 5; severe, n = 7), coloring according to (A). Vertical dashed lines: time

n the right side, grouping according to disease severity. Bold dotted line (right):

e.

es of cohort 1 (mild [yellow], n = 4; severe [red], n = 4), cohort 2 (mild [yellow], n =

scriptional regulators for monocyte clusters 0, 1, 2, and 3. Edges: predicted

rget genes (outer circle) represented as nodes sized and colored according to

sed on connectivity and literaturemining. Numbers in the center refer to clusters
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Low-Density Neutrophils Emerge in Severe COVID-19
Patients Indicative of Emergency Myelopoiesis
PBMCs derived from blood samples of patients with severe

COVID-19 contained two distinct clusters of LDNs (Figures 2A,

clusters 5 and 6, and 2D, clusters 5 and 6). LDNs were slightly

more frequent in cohort 1, and we analyzed these cells in more

detail. Subsampling of all LDNs (Figure 5A; Table S1) and re-

clustering the cells revealed 8 transcriptionally distinct cell clus-

ters (Figures 5A and 5B; Table S4). Based on published markers

for pro- and pre-neutrophils, andmature neutrophils (Kwok et al.,

2020; Ng et al., 2019; Scapini et al., 2016) we identified clusters 4

and 6 as CD81+SPN(CD43)+FUT4(CD15)+CD63+CEACAM8

(CD66b)+ pro-neutrophils, clusters 3 and 5 as ITGAM(CD11b)+

CEACAM8(CD66b)+CD101+/� pre-neutrophils, and the remain-

ing clusters as mature neutrophils (Figure S4A). Accordingly,

pro- and pre-neutrophils were enriched for transcriptional signa-

tures of neutrophil progenitors derived from published single-cell

data (Figure 4C) (Pellin et al., 2019; Popescu et al., 2019), and

pro-neutrophils in clusters 4 and 6 showed the highest propor-

tion of cells with a proliferative signature (Figure S4B). Clusters

0, 1, and 2 (originally in cluster 4 in Figure 2A) expressed mature

neutrophil markers FCGR3B (CD16) and MME (CD10)

(Figure S4A).

Differential gene expression analysis for each cluster re-

vealed extensive phenotypic heterogeneity within the LDN

compartment (Figure 5B). LDNsmainly arise under pathological

conditions, such as severe infection and sepsis in the context of

emergency myelopoiesis (Schultze et al., 2019), and they have

been associated with dysfunctional immune responses,

marked by combined immunosuppression and inflammation

(Silvestre-Roig et al., 2019). While LDN in cluster 1 expressed

numerous ISGs (ISG15, IFITM1/3, and RSAD2), cluster 4 (pro-

neutrophils) expressed genes (e.g., MPO, ELANE, and

PRTN3) that are involved in neutrophil extracellular trap forma-

tion (Stiel et al., 2018; Thomas et al., 2014; You et al., 2019)

among other functions and that have been associated with

sepsis (Ahmad et al., 2019; Carbon et al., 2019; Silvestre-

Roig et al., 2019). Both pre-neutrophil clusters expressed

PADI4, another co-factor in NETosis (Leshner et al., 2012) (Fig-

ure 5D). NETs have recently been implicated in the pathogen-

esis of COVID-19 (Barnes et al., 2020; Zuo et al., 2020). Both

pre-neutrophils (clusters 3 and 5) and pro-neutrophils ex-

pressed genes including CD24, OLFM4, LCN2, and BPI, previ-

ously associated with poor outcome in sepsis (Figures 5B and

S4A) (Kangelaris et al., 2015).

All LDNs also expressed high levels of alarmins S100A8 and

S100A9 (Figure 5D), whereas other S100 genes (e.g., S100A4

and S100A12) were strongly induced in selected neutrophil clus-

ters. Finally, known inhibitors of T cell activation, namely CD274

(PD-L1) andArginase 1 (ARG1) (Bronte et al., 2003; Li et al., 2018)

were highly expressed in neutrophils in COVID-19 patients (Fig-

ure 5E). ARG1+ neutrophils in sepsis patients were shown to

deplete arginine and constrain T cell function in septic shock

(Darcy et al., 2014) and were predictive of the development of

nosocomial infections (Uhel et al., 2017). Mature CD274(PD-

L1)+ neutrophils (cluster 0) have been attributed suppressive

functions in various conditions including HIV-1 infection (Bowers

et al., 2014), cancer (Chun et al., 2015) and in lymph nodes (Cas-
1428 Cell 182, 1419–1440, September 17, 2020
tell et al., 2019), spleen (Langereis et al., 2017), and blood after

LPS exposure (de Kleijn et al., 2013). ARG1+ cells were mainly

immature neutrophils (clusters 3–6) and did not overlap with

CD274 (PD-L1) expressing cells, indicating different populations

of dysfunctional and potentially suppressive neutrophils in se-

vere COVID-19.

LDNs recovered from PBMC fractions of COVID-19 patients

revealed the presence of dysfunctional neutrophils and pointed

toward multiple potentially deleterious pathways activated in se-

vere COVID-19.

Persistent Increase of Activated Neutrophil Precursors
and PD-L1+ Neutrophils in Severe COVID-19
Alterations of the neutrophil compartment were further interro-

gated by mass cytometry of whole blood samples of COVID-19

patients (n = 8 mild + 9 severe, cohort 1), FLI patients (n = 8),

and age- and gender-matched controls (n = 9) (Table S1), using

a panel designed to detect myeloid cell maturation and activa-

tion states as well as markers of immunosuppression or

dysfunction (Table S2). Unsupervised clustering analysis of all

neutrophils in all samples revealed 10 major clusters (Figure 6A)

of immature (clusters 2, 5, 6, and 7), mature (clusters 1, 3, and

4), and remaining clusters of low abundancy (clusters 8, 9, and

10). Based on their differential expression of CD11b, CD16,

CD24, CD34, and CD38, clusters 5 and 6 were identified as

pro-neutrophils and cluster 2 as pre-neutrophils (Kwok et al.,

2020; Ng et al., 2019). The fourth immature cell cluster (7)

showed very low expression of CD11b and CD16, reminiscent

of pro-neutrophils, but lacking CD34, CD38, and CD24 (Fig-

ure 6A), suggesting a hitherto unappreciated pro-neutrophil-

like population. The mature neutrophils segregated into non-

activated (cluster 1), partially activated (cluster 3), and highly

activated cells (cluster 4), based on the loss of CD62L and up-

regulation of CD64, as well as signs of proliferative activity

(Ki67+) (Figure 6A).

Neutrophils from COVID-19 patients clearly separated from

those of controls and also FLI patients in UMAP analysis (Fig-

ure 6B), and neutrophils in patients with severe COVID-19

were distinct from those of patients withmild disease (Figure 6B).

Cells from control donors accumulated in areas enriched for

mature non-activated cells (cluster 1) and immature pre-neutro-

phil-like cells (cluster 2). In contrast, neutrophils from FLI patients

were mainly mature non-activated (cluster 1) and mature highly

activated (cluster 4) cells. Neutrophils from COVID-19, particu-

larly frompatients with severe disease, primarily occupied imma-

ture pre- and pro-neutrophil-like clusters. Plotting cell cluster-

specific surface marker expression onto the UMAPs (Figure 6C)

as well as statistical analyses of cell cluster distribution and sur-

face marker expression among different patient groups sup-

ported these observations (Figures 6D and 6E). Samples from

FLI patients contain a high proportion of highly activated mature

neutrophils, but barely any immature neutrophils. In contrast, se-

vere COVID-19 is associated with the appearance of immature

pre- and pro-neutrophils (Figures 6D and 6E). Interestingly,

immature cell clusters in severe COVID-19 showed signs of

recent activation like upregulation of CD64 (Mortaz et al.,

2018), RANK, and RANKL (Riegel et al., 2012), aswell as reduced

CD62L expression (Mortaz et al., 2018). In addition to loss of



A

D

B C

E

Figure 5. Immature and Dysfunctional Low-Density Neutrophils Emerge in PBMC
(A) UMAP representation and clustering of low-density neutrophils (LDNs, 3,154 cells) in PBMCs (cohort 1, clusters 5/6, Figure 2A) from 21 samples (6 mild,

10 severe COVID-19). Left panel: cluster affiliation in Figure 2A. Right panel: data-driven clustering and cell type nomenclature based onmarker genes (Table S4).

(B) Dot plot of the top 10 marker genes sorted by average log fold change associated with the neutrophil clusters identified in (A).

(C) Signature enrichment scores of single-cell data from neutrophil progenitors (Pellin et al., 2019; Popescu et al., 2019) in LDN clusters, plotted as violin plots. The

lines in the violin plots represent the median of the respective AUC scores per cluster and the 0.25 and 0.75 quantiles. The ribosomalhi-specific cluster 7 was

excluded from this analysis.

(D) Violin plots of expression of selected activation genes across the neutrophil clusters identified in (A). The panel of genes was chosen based on their described

role in neutrophil extracellular trap formation (PRTN3, ELANE,MPO, and PADI4) and neutrophil activation and dysregulation (CD24, OLFM4, LCN2, BPI, CD274

[PD-L1], Arginase 1 [ARG1], and ANXA1).

(E) Expression of ARG1 and CD274(PD-L1) projected on the UMAP from (A).

See also Figure S4 and Table S1.
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Figure 6. Appearance of Immature and PD-L1+ Neutrophils in Severe COVID-19

(A) Heatmap revealing differences in marker expression determined by mass cytometry (antibody panel 2, cohort 1) of main neutrophil cell cluster (1 to 10). Main

individual neutrophil cell clusters are displayed in columns and marker identity is indicated in rows. MSI, marker staining intensity respective expression level.

(legend continued on next page)
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CD62L, immature andmature neutrophils from severe COVID-19

showed elevated PD-L1 expression compared to control sam-

ples (Figure 6E). Indeed, CD62L downregulation and high PD-

L1 expression has been frequently associated with suppressive

function of neutrophils and granulocytic myeloid-derived sup-

pressor cells (gMDSCs) (Bronte et al., 2016; Cassetta et al.,

2019; Kamp et al., 2012; Pillay et al., 2012; Tak et al., 2017; Testa

et al., 2004; Younos et al., 2015). Interestingly, a recent study

described a high abundance of similar immature and dysfunc-

tional CD64+ and PD-L1+ neutrophils in sepsis patients (Megh-

raoui-Kheddar et al., 2020).

Thus, SARS-CoV-2 infection induces major alterations in the

neutrophil compartment. While neutrophils in FLI patients display

a mature activated phenotype, a release of immature neutrophils

with phenotypic signs of immunosuppression and dysfunction is a

hallmark of severe COVID-19.

We next assessed the dynamics of the changes within the

myeloid cell compartment over time. We grouped samples ac-

cording to collection time as ‘‘early’’ (within the first 10 days) or

late (during the following 20 days) after onset of symptoms. In

both cohorts, we observed a tendency toward (cohort 1) or

significantly higher (cohort 2) proportions of granulocytes in se-

vere versus mild COVID-19 patients, both at early and late time

points (Figure S5A). We observed a persistent release of imma-

ture neutrophils (e.g., cluster 6) in severe COVID-19 (Figure S5B)

showing high expression of CD64 and PD-L1, but downregula-

tion of CD62L as a sign of activation, dysfunction, and immuno-

suppression (Figure S5C). In addition, severe COVID-19 patients

show further increased frequencies of mature, partially activated

neutrophils (cluster 3) at later time periods (Figure S5B). Thus,

the neutrophil compartment of severe COVID-19 patients is

characterized by a combination of persistent signs of inflamma-

tion and immunosuppression, which is reminiscent of long-term

post-traumatic complications (Hesselink et al., 2019).

We also analyzed time-dependent phenotypic changes in the

monocyte compartment by mass cytometry. Non-classical

monocytes started to recover in COVID-19 patients during the

later stages of the disease (Figure S5A). HLA-DRhiCD11chi

monocyte cell clusters also declined at later time points in mild

COVID-19 (Figures S5D–S5F), which correlates well with the lon-

gitudinal changes of IFI6 and ISG15 as well as HLA-DRA and

HLA-DRB1 expression profiles (Figures 4G and S3F). In contrast,
Significance level for the following comparisons: (1) controls (ctrl, n = 9) versus CO

second row), (3) FLI (n = 8) versus mild COVID-19 (n = 8, third row), as well as (4) co

heatmap (see also p value scale next to the heatmap). Samples of COVID-19 patie

collection per patient). Abundance testing via generalized mixed effects models a

and an FDR-cutoff of 5% across all clusters/subsets and between-group compa

(B) UMAP of neutrophils, down-sampled to 70,000 cells (30 markers, Table S2). C

(blue, controls; gray, FLI; yellow, mild COVID-19; red, severe COVID-19).

(C) UMAP (from (B) with cells colored according to expression intensity of CD38

(D) Box and whisker (10–90 percentile) plots of main neutrophil cell clusters 1 to 7

cohort 1): controls (n = 9), FLI (n = 8), and COVID-19 (mild, n = 8; severe, n = 9). Ab

adjustment using the Benjamini-Hochberg procedure and an FDR-cutoff of 5% a

(E) Box and whisker (10–90 percentile) plots of proportions of CD34+, CD11blo/�

PD-L1+ neutrophils (whole blood, cohort 1): controls (n = 9), FLI (n = 8), and CO

parison tests.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S5 and Tables S1 and S3.
overall proportions of HLA-DRhiCD11chi monocytes in severe

COVID-19 remained low throughout the course of the disease.

Proportions of CD10hi macrophage-like cluster 10 and

CD226+CD69+ monocytes were generally higher at later stages

in severe COVID-19, which resembled the kinetics of HLA-DRlo-

S100Ahimonocytes identified by scRNA-seq (Figure 4F). This in-

dicates a prolonged alternative activation of monocytes in se-

vere COVID-19 (Figure S5E).

Single-Cell Transcriptomes of Whole Blood Reveal
Suppressive-like Neutrophils in Severe COVID-19
Whole blood CyTOF analysis (cohort 1) clearly indicated very

distinct phenotypic alterations of the neutrophil compartment

in mild and severe forms of COVID-19. To further delineate the

underlying transcriptional programs, we performed scRNA-seq

analysis on fresh whole blood samples of 23 individuals (34 sam-

ples, cohort 2, Table S1). Integrated visualization of all samples

of cohort 2 (fresh/frozen PBMCs, fresh whole blood, 229,731

cells, Figure S6A) revealed the expected blood leukocyte distri-

bution, including granulocytes (Figures 7A and S6A; Table S4).

Cell-type distribution identified by scRNA-seq profiles (Fig-

ure S6B) strongly correlated with MCFC characterization of the

same samples (Figure S6C). For further analysis of the granulo-

cyte compartment, we first combined the whole blood samples

with the fresh PBMCs to guide the clustering of all major immune

cells resulting in a total of 122,954 cells (Figure 7A). From these

samples, we identified all neutrophil clusters and extracted the

cells derived from whole blood for subsampling, which revealed

a structure of 9 clusters (n = 58,383 cells) (Figures 7B and 7C).

Using marker- and data-driven approaches as applied to LDN

(Figure 5D and S4A), we identified FUT4(CD15)+CD63+CD66b+

pro-neutrophils, ITGAM(CD11b)+CD101+ pre-neutrophils, along

with 7 mature neutrophil clusters (Figures 7B–7D and S6D; Table

S4). Heterogeneous expression of various markers involved in

mature neutrophil function including CXCR2, FCGR2A (CD32),

FCGR1A (CD64), or MME (CD10), pointed toward distinct func-

tionalities within the neutrophil compartment (Figures 7E, S6D,

and S6E). Seven of the nine neutrophil clusters identified inwhole

blood in cohort 2 could also be mapped to the fresh PBMC tran-

scriptomes in cohort 1 (Figure S6F), indicating that scRNA-seq of

fresh PBMC in COVID-19 patients reveals relevant parts of the

neutrophil space. The transcriptional phenotype of pro- and
VID-19 (mild and severe, n = 17, first row), (2) mild (n = 8) versus severe (n = 9,

ntrols (ctrl, n = 9) versus FLI (n = 8) are indicated using a gray scale on top of the

nts collected between day 4 and 13 post-symptom onset (= first day of sample

nd multiple comparison adjustment using the Benjamini-Hochberg procedure

risons

ells are colored according to main cell clusters (1 to 10, see table). Donor origin

, CD34, CD16, CD11b, CD33, CD64, CD62L, and CD45.

, reaching proportions of over 1%, measured by mass cytometry (whole blood,

undance testing via generalizedmixed effects models andmultiple comparison

cross all clusters/subsets and between-group comparisons.

CD16�, CD64+, CD62L+, CD10�CD11blo/�CD16� (reported from panel 1) and

VID-19 (mild, n = 8; severe, n = 9). Kruskal-Wallis and Dunn’s multiple com-
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pre-neutrophils (cluster 8+9) was corroborated in cohort 2 (Fig-

ures 7B–7D and S6D).

Heatmap and UMAP visualization of the cell type distribution

identified pro- and pre-neutrophils mainly at late time points in

severe COVID-19 (Figures 7F and 7G). Furthermore, mature neu-

trophils with a high IFN-signature (cluster 1) were associatedwith

severe COVID-19 (Figures 7E andS6G). This cluster was also en-

riched for markers identified by CyTOF as differentially ex-

pressed in patients with severe COVID-19 (Figure 6), such as

elevated expression ofCD274 (PD-L1) and FCGR1A (CD64) (Fig-

ure 7H). In addition to CD274, cells in cluster 1 expressed genes

indicative of a potentially suppressive or anti-inflammatory state,

including ZC3H12A (Figure 7E), which is known to suppress hep-

atitis C virus replication and virus-induced pro-inflammatory

cytokine production (Lin et al., 2014). Cluster 2was also enriched

for cells from COVID-19 patients, mainly from severe but also

mild cases (Figures 7F and 7G).

Gene signatures from granulocytic MDSC (Bayik et al., 2020)

and CD274(PD-L1)+ neutrophils after LPS exposure (de Kleijn

et al., 2013), both shown to be immunosuppressive, were en-

riched in clusters 1, 2, and 6, which mainly harbor cells from se-

vere COVID-19. This indicates a suppressive functionality of

these cells in severe COVID-19 (Figure 7I). Predictions of tran-

scription factor (TF)-based regulation of the cluster-specific

gene signatures separated mature neutrophils from patients

with severe COVID-19 (cluster 1) and control patients (cluster

0) (Figure 7J). IFN-response genes are mainly controlled by

STAT and IRF TFs, whereas the transcriptional signature of clus-

ter 0 is mainly driven by the CEBP TF family. The TF network un-

derlying the transcriptional difference in pro-neutrophils ismainly

driven by E2F family members and pre-neutrophils mainly

depend on ETS TFs (Figure S6H).
Figure 7. Immature and Dysfunctional Whole-Blood Neutrophils in Sev

(A) UMAP of 35 fresh blood samples from cohort 2 (122,954 cells, PBMCs, and wh

COVID-19 (early, n = 3, late = 9). Clusters defined by Louvain clustering. Cell type

and marker gene expression (Table S4).

(B) UMAP visualization of neutrophils (58,383 cells; 34 whole blood samples, co

COVID-19 (early, n = 3; late, n = 9). Clusters defined by Louvain clustering (Table

(C) Nomenclature and marker genes for each neutrophil cluster from (B).

(D) Dot plot of selected marker genes for each neutrophil cluster from (B).

(E) Dot plot of genes from different functional classes (based on literature research

homeostatic mature neutrophils from controls.

(F) Heatmap divided by disease severity and stage (early versus late) showing th

(G) Density plot of cell frequency by disease severity and stage (early versus late

(H) UMAP visualization showing scaled expression of CD274 (PD-L1) and FCGR

(I) Violin plots showing AUCell-based enrichment as AUC scores of gene signature

L1hi neutrophils after LPS exposure (de Kleijn et al., 2013) in neutrophil clusters f

0.25 and 0.75 quantiles.

(J) Network representation of marker genes and their predicted upstream transcr

and 0 (mature/control-specific). Edges in cluster color: predicted transcriptional re

sized, and colored according to scaled expression level across all clusters. Sele

(K) Box and whisker (10-90 percentile) plots representing the hematological analy

measured by flow cytometry in white blood cell differential channel, included abs

range) and width of neutrophil cytometric dispersions (NE-WX, dispersion of sid

forward scatter). MannWhitney test applied to IG count analysis andmixed-effect

analyses.

(L) Box and whisker (10–90 percentile) plots of E. coli- and PMA-induced neutroph

of whole blood samples (cohort 1; mild, n = 10; severe [n = 8] COVID-19) in com

controls run in the assay. Mixed-effect-analysis and Sidak’s multiple comparison

See also Figure S6 and Table S1.
Pseudotime analysis strongly supported the differentiation tra-

jectory from pro-neutrophils (cluster 8) via pre-neutrophils (clus-

ter 6) to mature neutrophils in cluster 2 and 1 (Figures S6I and

S6J). Particularly CD274 (PD-1L) was enriched in cluster 1

compared to cluster 2, supporting the potential of neutrophils

to progress toward a suppressive phenotype in severe COVID-

19 (Figure S6J). Interestingly, CD177 is expressed in pre-neutro-

phils and persisting in cluster 1 further highlighting the newly

emerging character of this cluster (Volkmann et al., 2020).

Finally, we studied whether the persistent emergence of

immature, potentially dysfunctional neutrophils in severe

COVID-19 patients can be captured under routine diagnostic

conditions. Therefore, samples of 32 COVID-19 patients (Table

S1, cohort 1) were characterized by routine hematology analyses

using a clinical flow cytometry system (Sysmex analyzer).

Indeed, the assumption of rescue myelopoiesis in severe

COVID-19 was supported by significantly higher counts in the

population of immature granulocytes (IG, representing promye-

locytes, myelocytes, and metamyelocytes) in this patient group

(Figure 7K). We also found significant differences in the neutro-

phil compartment, when analyzing the width of dispersion with

respect to granularity, activity, and cell volume defined as NE-

WX, NE-WY, and NE-WZ, respectively. As compared to patients

with mild course, severely ill patients displayed increases in

width of dispersion of activity and cell volume as surrogates for

increased cellular heterogeneity, immaturity, and dysregulation

in severe COVID-19 (Figure 7K), resembling previously

described alterations in sepsis patients (Stiel et al., 2016).

Furthermore, neutrophils of severe COVID-19 patients were

partially dysfunctional, because their oxidative burst upon stim-

ulation with standardized stimuli (E. coli or PMA) was strongly

impaired in comparison to control and mild COVID-19
ere COVID-19

ole blood): controls (n = 17), mild COVID-19 (early, n = 3; late, n = 3) and severe

s assigned based on reference-based cell type classification (Aran et al., 2019)

hort 2): controls (n = 16), mild COVID-19 (early, n = 3; late, n = 3), and severe

S4).

). Clusters 8, 6, 1, and 2 are specific for severe COVID-19, cluster 0 represents

e proportion of each patient group for each cluster.

) overlaid on the UMAP of the neutrophil space.

1A (CD64).

from granulocyticmyeloid-derived suppressor cells (Bayik et al., 2020) and PD-

rom (B). Horizontal lines: median of the respective AUC scores per cluster and

iptional regulators for neutrophil clusters 1 (mature/COVID-19 severe-specific)

gulation. TFs (inner circle) and their predicted target genes (outer circle): nodes,

cted genes and TFs labeled based on connectivity and literature mining.

ses (whole blood, cohort 1): mild (n = 11), severe (n = 21) COVID-19. Analytes,

olute counts of immature granulocytes (IG, dotted line: upper limit of reference

e scatter; NE-WY, dispersion of side fluorescence light; NE-WZ, dispersion of

-analysis and Sidak’s multiple comparison test to NE-WX, NE-WY, and NE-WZ

il oxidative burst (reactive oxygen species [ROS] production) and phagocytosis

parison to controls measured by flow cytometry. Dotted line: relative level of

test. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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neutrophils, whereas phagocytic activity was preserved (Fig-

ure 7L; Table S1).

Collectively, the neutrophil compartment in peripheral blood

of severe COVID-19 patients is characterized by the appearance

of LDN, FUT4(CD15)+CD63+CD66b+ pro-neutrophils, and

ITGAM(CD11b)+CD101+ pre-neutrophils, reminiscent of emer-

gency myelopoiesis, as well as CD274(PD-L1)+ZC3H12A+

mature neutrophils reminiscent of gMDSC-like cells, whichmight

exert suppressive or anti-inflammatory functions.

DISCUSSION

SARS-CoV-2 infection generally causes mild disease in the ma-

jority of individuals, however, �10%–20% of COVID-19 patients

progress to severe disease with pneumonia and respiratory fail-

ure. The reported case-fatality rates among patients with critical

illness and respiratory failure vary, with a mean of �25% (Quah

et al., 2020). Dysregulated immune responses have been

described in patients with severe COVID-19 (Chua et al., 2020;

Giamarellos-Bourboulis et al., 2020; Lucas et al., 2020; Merad

and Martin, 2020; Messner et al., 2020; Wei et al., 2020; Zhou

et al., 2020b). Hence, detailed knowledge of the cellular and mo-

lecular processes that drive progression from mild disease to

potentially fatal courses of COVID-19 is urgently needed to iden-

tify predictive biomarkers and therapeutic targets.

Here, we employed four complementary technologies at sin-

gle-cell resolution to assess alterations in the systemic immune

response in mild or severe courses of COVID-19. We analyzed

a total of 53 patients (161 samples) from two independent co-

horts collected at two university medical centers in Germany

(Kurth et al., 2020). Combining single-cell transcriptomics with

single-cell proteomics, using different technological platforms

in two independent patient cohorts, provided a detailed view of

the systemic immune responses in COVID-19 and allowed for

cross-validation and in-depth interrogation of key findings. The

results were further supported by additional routine diagnostics

lab measurements and functional assays, linking the results of

the exploratory investigations to functional phenotypes and clin-

ically relevant diagnostics.

This multipronged approach revealed drastic changes within

the myeloid cell compartment during COVID-19, particularly in

patients with a severe course of disease. Early activation of

HLA-DRhiCD11chi/HLA-DRhiCD83hi monocytes with a strong

antiviral IFN-signature was a hallmark of mild COVID-19, which

receded during the natural course of disease. In contrast, HLA-

DRlo dysfunctional monocytes along with clear evidence of

emergency myelopoiesis with release of immature neutrophils

including pro- and pre-neutrophils into the circulation marked

severe COVID-19. Furthermore, we identified neutrophils in se-

vere COVID-19 with transcriptional programs reminiscent of

dysfunction and immunosuppression not observed in controls

or patients with mild COVID-19. Thus, defective monocyte acti-

vation and dysregulated myelopoiesis may contribute to severe

disease course and ARDS development (Middleton et al., 2020).

Previous immunophenotyping studies have reported an in-

crease of inflammatory monocytes with a strong IFN-response

in COVID-19 (Liao et al., 2020; Merad and Martin, 2020; Zhou

et al., 2020b). Mononuclear phagocytes and neutrophils appear
1434 Cell 182, 1419–1440, September 17, 2020
to dominate inflammatory infiltrates in the lungs, and resident

alveolar macrophages are replaced by inflammatory mono-

cyte-derived macrophages in patients with severe COVID-19

(Chua et al., 2020; Liao et al., 2020). Here, we report substantial

time- and disease severity-dependent alterations of the

monocyte compartment in COVID-19. Marked depletion of

CD14loCD16hi non-classical monocytes observed in all COVID-

19 patients, but not in patients with SARS-CoV-2 negative FLI

(Figure 1D), is in line with previous reports on COVID-19, and

other severe viral infections (Lüdtke et al., 2016; Naranjo-Gómez

et al., 2019). Single-cell proteomics and transcriptomics re-

vealed a transient increase in highly activated CD14+HLA-

DRhiCD11chi (HLA-DRAhiCD83hi) monocytes in mild COVID-19.

This was similar in patients presenting with common cold or

FLI, but absent in severe COVID-19 (Figures 3 and 4). In contrast,

in severe COVID-19, monocytes showed low expression of HLA-

DR, and high levels of MAFB, PLBD1, and CD163, all of which

are associated with anti-inflammatory macrophage functions

(Bronte et al., 2016; Cuevas et al., 2017; Fischer-Riepe et al.,

2020; MacParland et al., 2018). Low HLA-DR expression on

monocytes is an established surrogate marker of immunosup-

pression in sepsis (Venet et al., 2020). Elevated HLA-DRlo mono-

cytes have been associated with an increased risk of infectious

complications after trauma (Hoffmann et al., 2017) and fatal

outcome in septic shock (Monneret et al., 2006). Indeed, the

HLA-DRloCD163+ monocytes showed enrichment of genes

associated with poor prognosis in sepsis patients, including

PLAC8 (Maslove et al., 2019) and MPO (Schrijver et al., 2017)

(Figure 4B). In line with this dysfunctional phenotype, PLAC8

was recently shown to suppress production of IL-1b and IL-18

(Segawa et al., 2018). In fact, we observed that inflammatory

cytokine production, including IL-1b release, was impaired in

monocytes from patients with severe COVID-19 (Figure 4).

CD14+HLA-DRlo monocytes have also been implicated with

immunosuppression in cancer patients (Bronte et al., 2016;Men-

gos et al., 2019; Meyer et al., 2014). While exhibiting anti-inflam-

matory features, especially in the early stages of severe disease

(Figures S3C–S3F), persistently high expression of CD226 and

CD69may promote tissue infiltration and organ dysfunction (Da-

vison et al., 2017; Reymond et al., 2004; Vo et al., 2016).

Acute pathological insults, such as trauma or severe infec-

tions, trigger a process referred to as emergency myelopoiesis

to replenish functional granulocytes and other hematopoietic

cells. Emergency myelopoiesis is characterized by the mobiliza-

tion of immaturemyeloid cells, which are often linked to immuno-

suppressive functions (Loftus et al., 2018; Schultze et al., 2019).

In fact, emergence of suppressive myeloid cells including neu-

trophils, often referred to as granulocytic MDSCs, has been

observed during sepsis and severe influenza (Darcy et al.,

2014; Loftus et al., 2018; Sander et al., 2010; De Santo et al.,

2008). LDN in PBMC fractions in severe COVID-19 contained

immature neutrophils, including pro- and pre-neutrophils, which

was not observed in mild cases (Figure 5). These immature LDNs

showed a surface marker and gene expression profile reminis-

cent of granulocytic MDSCs including genes such as S100A12,

S100A9, MMP8, ARG1 (Uhel et al., 2017), and OLFM4, which

has been recently associated with immunopathogenesis in

sepsis (Alder et al., 2017). Emergence of pro-neutrophils in
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severe COVID-19 was also detected by single-cell proteomics

on whole blood samples. Strikingly, both immature and the

mature neutrophils showed increased expression of CD64 and

PD-L1 (Figures 6 and S5), similar to recently described alter-

ations in sepsis (Meghraoui-Kheddar et al., 2020). In addition

to the altered phenotype, we also observed an altered function-

ality. Neutrophils frompatients with severe COVID-19 showed an

impaired oxidative burst response, while their phagocytic capac-

ity was preserved (Figure 7).

Single-cell transcriptomics of whole blood samples revealed

mature activated neutrophils in both mild and severe COVID-

19 (Figure 7B, cluster 2), however, expression of CD274 (PD-

L1) was only found in severe COVID-19 (cluster 1), and it

increased in later stages of the disease. Expression of PD-L1

on neutrophils has been associated with T cell suppression

(Bowers et al., 2014; Castell et al., 2019; de Kleijn et al., 2013;

Langereis et al., 2017), suggesting that neutrophils in severe

COVID-19 might exert suppressive functions. Furthermore, the

expression of CD177 on mature activated neutrophils and the

identification of genes associated with anti-inflammatory func-

tions (CD274 and ZC3H12A) suggest a model in which neutro-

phils emerging prematurely from the bone marrow are pro-

grammed toward an anti-inflammatory or even suppressive

phenotype in severe COVID-19. The transcriptional programs

induced in immature neutrophils, including pro- and pre-neutro-

phils, as well as in COVID-19-associated mature neutrophil clus-

ters, align with other observations in severe COVID-19 patients,

including increased NET formation (Barnes et al., 2020; Zuo

et al., 2020), coagulation (Klok et al., 2020; Pfeiler et al., 2014),

and immunothrombosis (Stiel et al., 2018; Xu et al., 2020). In

contrast, these transcriptional programs were not observed in

patients with mild COVID-19 or in SARS-CoV-2 negative con-

trols, even though the latter exhibited a range of comorbidities

(e.g., COPD, type II diabetes).

Thus, defective or repressed monocyte activation combined

with dysregulated myelopoiesis may cause a deleterious loop

of continuous tissue inflammation and ineffective host defense.

Limitations of Study
The pathophysiological consequences of the dysfunctional

phenotype of myeloid cells in severe COVID-19 remain unclear

at this stage. It is, however, highly likely that they contribute to

immunosuppression in critically ill patients, potentially leading

to insufficient host defense, disbalanced inflammation, and

increased susceptibility to superinfections. While our dual cohort

study design provided robust and reproducible results concern-

ing the alterations within the myeloid compartment in COVID-19,

it is too early to speculate on the underlying mechanisms driving

this response, such as genetics, lifestyle, comorbidities, environ-

mental factors, or initial viral load (Ellinghaus et al., 2020). Utiliz-

ing the herein established transcriptional and functional pheno-

types of the myeloid cell compartment, it will likely be possible

to estimate the potential contribution of the causes mentioned

above in larger clinical studies in the future and to address poten-

tial upstream events of immune dysregulation in preclinical

model systems as they become available (Bao et al., 2020; Co-

hen, 2020). Indeed, in future studies it will be interesting to

dissect whether the myeloid subsets in COVID-19 are anti-in-
flammatory or even capable of suppressing other immune cells,

and which pathways might be mainly involved. Clearly, PD-L1 is

a prime candidate (Bowers et al., 2014; Castell et al., 2019; de

Kleijn et al., 2013; Langereis et al., 2017).

Collectively, our data link a striking appearance of immature

and dysfunctional cells, in both the monocyte and neutrophil

compartment, to disease severity in COVID-19. Consequently,

the development of treatments and prevention strategies for se-

vere COVID-19 may benefit from insights gained in other fields

such as oncology, which have successfully applied therapies

targeting suppressive myeloid cells.
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rhoi, A., Krieg, C., Lin, A., Loré, K., Marini, O., et al. (2019). Deciphering

myeloid-derived suppressor cells: isolation and markers in humans, mice

and non-human primates. Cancer Immunol. Immunother. 68, 687–697.

Castell, S.D., Harman, M.F., Morón, G., Maletto, B.A., and Pistoresi-Palencia,

M.C. (2019). Neutrophils which migrate to lymph nodes modulate CD4+ T cell

response by a PD-L1 dependent mechanism. Front. Immunol. 10, 105.

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X.,

Chen, H., Yu, H., et al. (2020). Clinical and immunological features of severe

and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629.

Chua, R.L., Lukassen, S., Trump, S., Hennig, B.P., Wendisch, D., Pott, F., Deb-
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Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425.

Lin, R.-J., Chu, J.-S., Chien, H.-L., Tseng, C.-H., Ko, P.-C., Mei, Y.-Y., Tang,

W.-C., Kao, Y.-T., Cheng, H.-Y., Liang, Y.-C., and Lin, S.Y. (2014). MCPIP1

suppresses hepatitis C virus replication and negatively regulates virus-

induced proinflammatory cytokine responses. J. Immunol. 193, 4159–4168.

Loftus, T.J., Mohr, A.M., and Moldawer, L.L. (2018). Dysregulated myelopoie-

sis and hematopoietic function following acute physiologic insult. Curr. Opin.

Hematol. 25, 37–43.

Long, Q.-X., Liu, B.-Z., Deng, H.-J., Wu, G.-C., Deng, K., Chen, Y.-K., Liao, P.,

Qiu, J.-F., Lin, Y., Cai, X.-F., et al. (2020). Antibody responses to SARS-CoV-2

in patients with COVID-19. Nat. Med. 26, 845–848.

Lucas, C., Wong, P., Klein, J., Castro, T.B.R., Silva, J., Sundaram, M., Elling-

son, M.K., Mao, T., Oh, J.E., Israelow, B., et al.; Yale IMPACT Team (2020).

Longitudinal analyses reveal immunological misfiring in severe COVID-19. Na-

ture. https://doi.org/10.1038/s41586-020-2588-y.
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CD3 purified (UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

CD196 141Pr (G034E3) Fluidigm Cat# 3141003A; RRID:AB_2687639

CD19 142Nd (HIB-19) Fluidigm Cat# 3142001; RRID:AB_2651155

CD123 143Nd (6H6) Fluidigm Cat# 3143014B; RRID:AB_2811081

CD15 144Nd (W6D3) Fluidigm Cat# 3144019B

CD138 145Nd (DL101) Fluidigm Cat# 3145003B

CD64 146Nd (10.1) Fluidigm Cat# 3146006; RRID:AB_2661790

CD21 purified (Bu32) Biolegend Cat# 354902; RRID:AB_11219188

CD226 purified (REA1040) Miltenyi Biotec Produced at request

IgD purified (IgD26) Biolegend Cat# 348235; RRID:AB_2563775

ICOS 148Nd (C398.4A) Fluidigm Cat# 3148019B; RRID:AB_2756435

CD206 purified (152) Biolegend Cat# 321127; RRID:AB_2563729

CD96 purified (REA195) Miltenyi Biotec Produced at request

KLRG1 purified (REA261) Miltenyi Biotec Produced at request

TCRgd purified (11F2) Miltenyi Biotec Produced at request

FceRI 150Nd (AER-37) Fluidigm Cat# 3150027B

CD155 purified (REA1081) Miltenyi Biotec Produced at request

CD95 purified (DX2) Biolegend Cat# 305631; RRID:AB_2563766

TIGIT 153Eu (MBSA43) Fluidigm Cat# 3153019B; RRID:AB_2756419

CD62L 153Eu (DREG56) Fluidigm Cat# 3153004B; RRID:AB_2810245

CD62L purified (DREG56) Biolegend Cat# 304835; RRID:AB_2563758

CD1c purified (L161) Biolegend Cat# 331502; RRID:AB_1088995

CD27 155Gd (L128) Fluidigm Cat# 3155001B; RRID:AB_2687645

CXCR3 156Gd (G025H7) Fluidigm Cat# 3156004B; RRID:AB_2687646

KLRF1 purified (REA845) Miltenyi Biotec Produced at request

CD10 158Gd (HI10a) Fluidigm Cat# 3158011B

CD33 158Gd (WM53) Fluidigm Cat# 3158001; RRID:AB_2661799

(Continued on next page)
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CD14 160Gd (RMO52) Fluidigm Cat# 3160006; RRID:AB_2661801

CD28 purified (L293) BD Bioscience Cat# 348040; RRID:AB_400367

CD69 162Dy (FN50) Fluidigm Cat# 3162001B

CD294 163Dy (BM16) Fluidigm Cat# 3163003B; RRID:AB_2810253

RANKL APC Miltenyi Biotec Cat# 130-098-511; RRID:AB_2656691

Anti-APC 163Dy Fluidigm Cat# 3163001B; RRID:AB_2687636

CXCR5 164Dy (51505) Fluidigm Cat# 3164016B; RRID:AB_2687858

Siglec 8 164Dy (7C9) Fluidigm Cat# 3164017B

CD34 166Er (581) Fluidigm Cat# 3166012B; RRID:AB_2756424

CD38 167Er (HIT2) Fluidigm Cat# 3167001B; RRID:AB_2802110

Ki67 168Er (Ki-67) Fluidigm Cat# 3168007B; RRID:AB_2800467

CD25 169Tm (2A3) Fluidigm Cat# 3169003; RRID:AB_2661806

CD24 169Tm (ML5) Fluidigm Cat# 3169004B; RRID:AB_2688021

Lag3 purified (11C3C65) Biolegend Cat# 369302; RRID:AB_2616876

RANK purified (80704) R&D Systems Cat# MAB683; RRID:AB_2205330

CD161 purified (HP-3G10) Biolegend Cat# 339919; RRID:AB_2562836

CD11b purified (ICRF44) Biolegend Cat# 301337; RRID:AB_2562811

CD45RO purified (4G11) DRFZ Berlin N/A

CD44 purified (BJ18) Biolegend Cat# 338811; RRID:AB_2562835

CD137 173Yb (4B4-1) Fluidigm Cat# 3173015B

PD-1 175Lu (EH12.2H7) Fluidigm Cat# 3175008; RRID:AB_2687629

PD-L1 175Lu (29.E2A3) Fluidigm Cat# 3175017B; RRID:AB_2687638

CD56 176Yb (NCAM16.2) Fluidigm Cat# 3176008; RRID:AB_2661813

CD8A purified (GN11) DRFZ Berlin N/A

IgM purified (MHM-88) Biolegend Cat# 314502; RRID:AB_493003

CD11c purified (Bu15) Biolegend Cat# 337221; RRID:AB_2562834

B2M purified (2M2) Biolegend Cat# 316302; RRID:AB_492835

CD16 209Bi (3G8) Fluidigm Cat# 3209002B; RRID:AB_2756431

A0251 anti-human Hashtag 1 Biolegend Cat# 394601; RRID:AB_2750015

A0252 anti-human Hashtag 2 Biolegend Cat# 394603; RRID:AB_2750016

A0253 anti-human Hashtag 3 Biolegend Cat# 394605; RRID:AB_2750017

A0254 anti-human Hashtag 4 Biolegend Cat# 394607; RRID:AB_2750018

A0255 anti-human Hashtag 5 Biolegend Cat# 394609; RRID:AB_2750019

A0256 anti-human Hashtag 6 Biolegend Cat# 394611; RRID:AB_2750020

A0257 anti-human Hashtag 7 Biolegend Cat# 394613; RRID:AB_2750021

CD235ab Biotin (HIR2) Biolegend Cat# 306618; RRID:AB_2565773

Chemicals, Peptides, and

Recombinant Proteins

BD Horizon Brilliant Stain Buffer Becton Dickinson Cat# 563794

RBC lysis buffer 10X Biolegend Cat# 420301

Pierce 16% Formaldehyde

(w/v), Methanol-free

Thermo Fisher Cat# 28908

RPMI 1640 Medium GIBCO Cat# 11875093

Fetal Bovine Serum PAN Biotec Cat# 3302

Stain Buffer (FBS) Becton Dickinson Cat# 554656

Pancoll human, Density: 1.077 g/ml Pan Biotech Cat# P04-601000

Dulbecco’S Phosphate

Buffered Saline, MO

Sigma-Aldrich Cat# D8537

(Continued on next page)

ll

e2 Cell 182, 1419–1440.e1–e12, September 17, 2020

Article



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FcR Blocking Reagent, human Miltenyi Cat# 130-059-901

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Permeabilization buffer 10X eBioscience Cat# 00-8333-56

Maxpar PBS Fluidigm Cat# 201058

Maxpar Cell Staining buffer Fluidigm Cat# 201068

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat# 201300

Proteomic stabilizer Smart Tube Inc. Cat# PROT1

Nuclease-Free Water Invitrogen Cat# AM9937

KAPA HiFi HotStart Ready Mix Roche Cat# KK2601

Human Tru Stain FcX Biolegend Cat# 422301

TE Buffer, pH8.0, 1mM disodium EDTA Thermo Fisher Cat# 12090015

SPRIselect Beckmann Coulter Cat# B23318

10% Tween 20 BIO-RAD Cat# 1662404

Buffer EB QIAGEN Cat# 19086

Ethanol, Absolute Fisher Bioreagents Cat# BP2818-500

Glycerol, 85% Merck Cat# 1040941000

Bovine Serum Albumin

(IgG-Free, Protease-Free)

Jackson Immuno Research Cat# 001-000-161

LPS, TLRpure Innaxon Cat# IAX-100-010

Tween20 Sigma-Aldrich Cat# P1379-500M

MagniSortTM Negative Selection Beads Thermo Fisher Cat# MSNB-6002-74

Lysercell WDF Sysmex Cat# AL-337-564

FluorocellTM WDF Sysmex Cat# CV-377-552

Critical Commercial Assays

LIVE/DEAD Fixable Yellow

Dead Cell Stain Kit

Thermo Fisher Cat# L34967

LEGENDplexTM Human

Inflammation Panel 1 (Mix&Match)

Biolegend Cat# 740809

Human Single-Cell Multiplexing Kit Becton Dickinson Cat# 633781

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody Cartridge Kit Becton Dickinson Cat# 633733

BD Rhapsody cDNA Kit Becton Dickinson Cat# 633773

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32854

Chromium Next GEM Single Cell 30

GEM, Library & Gel Bead Kit v3.1

10x genomics Cat# 1000121

Chromium Next GEM Chip G Single Cell Kit 10x genomics Cat# 1000120

Single Index Kit T Set A 10x genomics Cat# 1000213

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S1 Reagent Kit (100 cycle) Illumina Cat# 200012865

NovaSeq 6000 S2 Reagent Kit (100 cycle) Illumina Cat# 20012862

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NextSeq 500/550 High

Output Kit v2.5 (150 Cycles)

Illumina Cat# 20024907

Pan Monocyte Isolation Kit, human Miltenyi Cat# 130-096-537

CE/IVD Phagoburst BD Biosciences Cat# 341058

CD/IVD PHAGOTEST BD Biosciences Cat# 341060

(Continued on next page)
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Deposited Data

scRNA-seq raw data This paper EGAS00001004571

Processed scRNA-seq

count data and code

This paper http://fastgenomics.org

Supplemental Tables S1–S4 This paper https://data.mendeley.com/datasets/

hwxhw2sxys/1

Oligonucleotides

SI-PCR primer IDT AATGATACGGCGACCACCGAGATCTA

CACTCTTTCCCTACACGACGC*T*C

HTO additive primer IDT GTGACTGGAGTTCAGACGTGTGC*T*C

D701_S IDT CAAGCAGAAGACGGCATACGAGA

TCGAGTAATGTGACTGGAGTTCAGACGTGT*G*C

D702_S IDT CAAGCAGAAGACGGCATACGAGA

TTCTCCGGAGTGACTGGAGTTCAGACGTGT*G*C

D703_S IDT CAAGCAGAAGACGGCATACGAGATA

ATGAGCGGTGACTGGAGTTCAGACGTGT*G*C

D705_S IDT CAAGCAGAAGACGGCATACGAGATTTC

TGAATGTGACTGGAGTTCAGACGTGT*G*C

Software and Algorithms

CellRanger 10x genomics v3.1.0

Bcl2fastq2 Illumina v2.20

STAR Dobin et al., 2013 v2.6.1b

Cutadapt Martin, 2011 v1.16

Dropseq-tools https://github.com/

broadinstitute/Drop-seq/

v2.0.0

R https://www.cran.r-project.org v3.6.2

Seurat (R package) Butler et al., 2018;

Hafemeister and Satija, 2019;

Stuart et al., 2019

v3.1.4, v3.1.2 (CRAN)

Harmony (R package) Korsunsky et al., 2019

(https://github.com/

immunogenomics/harmony)

v1.0

Destiny (R package) Angerer et al., 2016 v 3.0.1

ClusterProfiler (R package) Yu et al., 2012 v3.10.1 (CRAN)

SingleR (R package) Aran et al., 2019 v1.0.5 (Bioconductor)

DirichletReg (R package) Maier, 2014 v0.6.3.1 (CRAN)

AUCell (R package) Aibar et al., 2017 v1.6.1 (CRAN)

Cytobank Kotecha et al., 2010

https://www.cytobank.org

https://doi.org/10.1002/

0471142956.cy1017s53

SPADE (Cytobank) Qiu et al., 2011 Cytobank is running a version of

SPADE derived from v1.10.2

flowCore (R package) https://www.bioconductor.org/

packages/release/bioc/html/flowCore.html

v1.48.1 (Bioconductor),

10.18129/B9.bioc.flowCore

CytoML (R package) https://github.com/RGLab/CytoML v1.8.1 (Bioconductor),

10.18129/B9.bioc.CytoML

CytofBatchAdjust (R package) https://github.com/

CUHIMSR/CytofBatchAdjust

https://doi.org/10.3389/fimmu.2019.02367

uwot (R package) https://cran.r-project.org/

web/packages/uwot/index.html

v0.1.8 (CRAN)

ComplexHeatmap (R package) Gu et al., 2016 v1.20.0 (Bioconductor)

(Continued on next page)
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lme4 (R package) Nowicka et al., 2017 v1.1-21 (CRAN)

multcomp (R package) Hothorn et al., 2008 v1.4-13 (CRAN)

lsmeans (R package) Lenth, 2016 v2.30-0 (CRAN)

Prism (software) https://www.graphpad.com v8

FlowJo https://www.flowjo.com v10.6.1

Cytoscape https://www.cytoscape.org v3.7.1 (https://doi.org/10.1101/gr.1239303)

iRegulon Janky et al., 2014 v1.3
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joachim

L. Schultze (j.schultze@uni-bonn.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
ScRNA-seq data generated during this study are deposited at the European Genome-phenome Archive (EGA) under access number

EGAS00001004571, which is hosted by the EBI and the CRG.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples from patients with COVID-19 were collected within two cohort studies (Kurth et al., 2020) designed to allow deep molecular

and immunological transcriptomic and proteomic profiling of COVID-19 in blood. Patients for which sufficient material was available

for scRNA-seq, CyTOF or flow cytometry analysis, were included in this study. This study was designed to describe immunological

deviations in COVID-19 patients without intention of the development of new treatments or new diagnostics, and therefore sample

size estimation was not included in the original study design.

Cohort 1 / Berlin cohort
This study includes a subset of patients enrolled between March 2 and July 02 2020 in the Pa-COVID-19 study, a prospective obser-

vational cohort study assessing pathophysiology and clinical characteristics of patients with COVID-19 at Charité Universitätsmedizin

Berlin (Kurth et al., 2020). The study is approvedby the Institutional Reviewboard ofCharité (EA2/066/20).Written informedconsentwas

provided by all patients or legal representatives for participation in the study. The patient population included in all analyses of cohort 1

consists of 10 control donors (samples collected in 2019 before SARS-CoV2 outbreak), 8 patients presenting with flu-like illness but

tested SARS-CoV-2-negative, 25 mild and 29 severe COVID-19 patients (Figures 1A and 1B; Table S1). Information on age, sex, medi-

cation, and co-morbidities is listed in Table S1. All COVID-19 patients were tested positive for SARS-CoV-2 RNA in nasopharyngeal

swabs and allocated to mild (WHO 2-4) or severe (5-7) disease according to the WHO clinical ordinal scale. We also included

publicly available single-cell transcriptome data derived from 22 control samples into the analysis; 3 samples were derived from 10x

Genomics, San Francisco, CA 94111, USA (5k_pbmc_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.

0.2/5k_pbmc_v3, pbmc_10k_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3,

pbmc_1k_v3: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3), 19 samples derived from

Reyes et al. (2020).

Cohort 2 / Bonn cohort
This study was approved by the Institutional Review board of the University Hospital Bonn (073/19 and 134/20). After providing writ-

ten informed consent, 19 control donors and 22 COVID-19 patients (Figures 1A and 1B; Table S1) were included in the study. In pa-

tients who were not able to consent at the time of study enrollment, consent was obtained after recovery. Information on age, sex,

medication, and co-morbidities are listed in Table S1. COVID-19 patients who tested positive for SARS-CoV-2 RNA in nasopharyn-

geal swabs were recruited at the Medical Clinic I of the University Hospital Bonn between March 30 and June 17, 2020 and allocated

tomild (WHO2-4) or severe (5-7) disease according to theWHOclinical ordinal scale. Controls in cohort 2 were collected from healthy
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people or from otherwise hospitalized patients with a wide range of diseases and comorbidities including chronic inflammatory im-

mune responses. These individuals were either tested negative for SARS-CoV-2, serologically negative or had no indication for acute

COVID-19 disease based on clinical or laboratory parameters.

METHOD DETAILS

Isolation of blood cells for scRNA-seq
Cohort 1 / Berlin cohort

PBMC were isolated from heparinized whole blood by density centrifugation over Pancoll (density: 1.077 g/ml; PAN-Biotech). If the

pellet was still slightly red, remaining CD235ab+ cells (Erythrocytes) were depleted by Negative Selection (MagniSort Thermo Fisher).

Subsequently the PBMC were prepared for 30scRNA-seq (10xGenomics) or cryopreserved and analyzed later.

Cohort 2 / Bonn cohort
In the Bonn cohort, scRNA-seq was performed on fresh whole blood, fresh PBMC and frozen PBMC. Briefly, PBMC were isolated

from EDTA-treated or heparinized peripheral blood by density centrifugation over Pancoll or Ficoll-Paque density centrifugation (den-

sity: 1.077 g/ml). Cells were then washedwith DPBS, directly prepared for scRNA-seq (BDRhapsody) or cryopreserved in RPMI1640

with 40% FBS and 10% DMSO. Whole blood was prepared by treatment of 1ml peripheral blood with 10ml of RBC lysis buffer (Bio-

legend). After one wash in DPBS cells were directly processed for scRNA-seq (BD Rhapsody) or multi-color flow cytometry (MCFC).

Frozen PBMCwere recovered by rapidly thawing frozen cell suspensions in a 37�Cwater bath followed by immediate dilution in pre-

warmed RPMI-1640+10% FBS (GIBCO) and centrifugation at 300 g for 5min. After centrifugation, the cells were resuspended in

RPMI-1640+10% FBS and processed for scRNA-seq. Antibody cocktails were cryopreserved as described before (Schulz and

Mei, 2019).

Antibodies used for mass cytometry
All anti-human antibodies pre-conjugated to metal isotopes were obtained from Fluidigm Corporation (San Francisco, US). All re-

maining antibodies were obtained from the indicated companies as purified antibodies and in-house conjugation was done using

the MaxPar X8 labeling kit (Fluidigm). Table S2 shows a detailed list of all antibodies used for panel 1 and panel 2.

Sample processing, antigen staining and data analysis of mass cytometry-based immune cell profiling
500ml of whole blood (heparin) was fixed in 700ml of proteomic stabilizer (Smart Tube Inc., San Carlos, US) as described in the user

manual and stored at �80�C until further processing. Whole blood samples were thawed in Thaw/Lyse buffer (Smart Tube Inc.). For

barcoding antibodies recognizing human beta-2 microglobulin (B2M) were conjugated in house to 104Pd, 106Pd, 108Pd, 110Pd, 198Pt

(Mei et al., 2015, 2016; Schulz and Mei, 2019). Up to 10 individual samples were stained using a staining buffer from Fluidigm with a

combination of two different B2M antibodies for 30min at 4�C. Cells were washed and pooled for surface and intracellular staining.

For surface staining the barcoded and pooled samples were equally divided into two samples. Cells were resuspended in antibody

staining cocktails for panel 1 or panel 2 respectively (Table S2) and stained for 30min at 4�C. For secondary antibody staining of panel

2, cells were washed and stained with anti-APC 163Dy for 30min at 4�C. After surface staining cells were washed with PBS and fixed

overnight in PFA solution diluted in PBS to 2%.

For intracellular staining cells were washed twice with a permeabilization buffer (eBioscience, San Diego, US) and stained with the

respective antibodies diluted in a permeabilization buffer for 30min at room temperature. After washing, cells were stained with

iridium intercalator (Fluidigm) diluted in 2% PFA for 20min at room temperature. Cells were washed once with PBS and then twice

with ddH2O and kept at 4�C until mass cytometry measurement.

Aminimumof 100,000 cells per sample and panel were acquired on aCyTOF2/Heliosmass cytometer (Fluidigm). For normalization

of the fcs files 1:10 EQ Four Element Calibration Beads (Fluidigm) were added. Cells were analyzed using a CyTOF2 upgraded to

Helios specifications, with software version 6.7.1014, using a narrow bore injector. The instrument was tuned according to the man-

ufacturer’s instructions with tuning solution (Fluidigm) and measurement of EQ four element calibration beads (Fluidigm) containing

140/142Ce, 151/153Eu, 165Ho and 175/176Lu served as a quality control for sensitivity and recovery. Directly prior to analysis, cells

were resuspended in ddH2O, filtered through a 20-mmcell strainer (Celltrics, Sysmex), counted and adjusted to 5-8 x105 cells/ml. EQ

four element calibration beadswere added at a final concentration of 1:10 v/v of the sample volume to be able to normalize the data to

compensate for signal drift and day-to-day changes in instrument sensitivity. Samples were acquired with a flow rate of 300-400

events/s. The lower convolution threshold was set to 400, with noise reduction mode turned on and cell definition parameters set

at event duration of 10-150 pushes (push = 13ms). The resulting flow cytometry standard (FCS) files were normalized and randomized

using the CyTOF software’s internal FCS-Processing module on the non-randomized (‘original’) data. The default settings in the soft-

ware were used with time interval normalization (100 s/minimum of 50 beads) and passport version 2. Intervals with less than 50

beads per 100 s were excluded from the resulting FCS file.
e6 Cell 182, 1419–1440.e1–e12, September 17, 2020



ll
Article
Blood processing for multi-color flow cytometry
1ml of fresh blood from control or COVID-19 donors was treated with 10ml of RBC lysis buffer (Biolegend). After RBC lysis, cells were

washed with DPBS and 1-2million cells were used for flow cytometry analysis. Cells were then stained for surfacemarkers (Table S3)

in DPBS with BD Horizon Brilliant Stain Buffer (Becton Dickinson) for 30min at 4�C. To distinguish live from dead cells, the cells were

incubated with LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (1:1000 – Thermo Scientific). Following staining and washing, the cell

suspension was fixed with 4% PFA for 5min at room temperature to prevent any possible risk of contamination during acquisition of

the samples. Flow cytometry analysis was performed on a BDSymphony instrument (Becton Dickinson) configured with 5 lasers (UV,

violet, blue, yellow-green, red).

Ex vivo functional analysis of neutrophils
Determination of neutrophil oxidative burst and phagocytosis was performed by flow cytometry using the CE/IVD PHAGOBURST

and PHAGOTEST assay (BD Biosciences, Heidelberg, Germany) according to the manufacturer’s instructions.

Briefly, heparinized whole blood was incubated with PMA, unlabeled opsonized E. coli bacteria or washing solution (negative con-

trol) at 37�C for 10min. Dihydrorhodamine (DHR 123) was then added for 10min, erythrocytes were lysed and DNA staining solution

was added. The freely cell permeable nonfluorescent Dihydrorhodamine 123 becomes fluorescent when oxidized by reactive oxygen

species. Stained samples were analyzed on a Navios flow cytometer (Beckman Coulter, Krefeld, Germany) within less than 30min.

The respiratory burst intensity in neutrophils was determined by analysis of increase in the mean fluorescence intensity (MFI) in the

FL1 Channel in the stimulated samples compared to the unstimulated control.

For analysis of neutrophil phagocytic activity, heparinized whole blood was incubated with FITC-labeled opsonized E. coli bacteria

for 10min at 37�C or 0�C (negative control). After incubation, the reaction was stopped, erythrocytes were lysed and the DNA staining

solution was added. Stained samples were analyzed on a Navios flow cytometer (Beckman Coulter, Krefeld, Germany) within less

than 30min. The phagocytic activity of neutrophils was determined by the increase in MFI in the FL1 Channel in the stimulated sample

compared to the unstimulated control. Data were analyzed using prism version 8. Mixed-effect-analysis and Sidak’s multiple com-

parison test was applied to report statistical differences of E.coli- and PMA-induced ROS production as well as phagocytosis be-

tween mild and severe COVID-19 patients.

Ex vivo functional analysis of monocytes
Monocytes were isolated from frozen PBMCs by negative selection using the Pan Monocyte Isolation Kit (Miltenyi, Bergisch Glad-

bach, Germany). The purity of isolated cells was assessed by BD Canto 2 flow cytometer, and preparations with > 85% purity were

used for experiments. Monocytes were resuspended in complete RPMI1640 medium (GIBCO) supplemented with 10% heat-inacti-

vated fetal bovine serum (Pan Biotech), 10 U/ml penicillin and 10 mg/ml streptomycin (Sigma-Aldrich, USA), and stimulated for 8hwith

LPS (1 ng/ml; TLRpure; Innaxon, UK). After stimulation, cell-free supernatants were collected and tested for IL-1b, IFNg, and TNFa,

respectively, using the cytokine bead assay Legend-Plex Mix&Match inflammation panel 1 kit (Biolegend, USA). Cytokine-bound

beads were measured with a BD Canto 2 flow cytometer and analyzed using Legend-Plex Software 8.0 (Biolegend, USA).

Hematological analyses of the granulocyte compartment
Blood samples were collected into K3EDTA evacuated plastic tubes (Greiner Bio-One GmbH, Frickenhausen, Germany) and were

subsequently analyzed using Sysmex XN-10 hematology analyzers within a XN-2000 or XN-9100 configuration (SysmexCorporation,

Kobe, Japan) as previously described (Stiel et al., 2016). Immature granulocytes (IG) were quantified by automated flow cytometry

using the SysmexWBC differential channel in XN-10 hematology analyzers within a XN-2000 or XN-9100 configuration (Sysmex Cor-

poration, Kobe, Japan). Whole blood was treated with LysercellWDF for cell permeabilization and stained with the nucleic acid poly-

methine fluorescent dye FluorocellWDF according to Sysmex-proprietary protocols without modifications. Subsequent differentia-

tion of white blood cells into lymphocytes, monocytes, neutrophils, eosinophils, and immature granulocytes was achieved by flow

cytometry using a 663 nm laser. The cell populations’ distinct forward-scattered light (FSC =NE-WZ, i.e., cell volume), side-scattered

light (SSC = NE-WX, i.e., granularity), and side-fluorescent light (SFL = NE-WY, i.e., nucleic acid content) properties allowed deter-

mining the width of neutrophil cytometric dispersions applying Sysmex-proprietary algorithms. Data were analyzed using prism

version 8. Mann Whitney test was used to report differences in IG count, whereas mixed-effect-analysis and Sidak’s multiple com-

parison test was applied to report statistical differences of NE-WX, NE-WY and NE-WZ betweenmild and severe COVID-19 patients.

10x Genomics Chromium single-cell RNA-seq
PBMC were isolated and prepared as described above. Afterward, patient samples were hashtagged with TotalSeq-A antibodies

(Biolegend) according to the manufacturer’s protocol for TotalSeqTM-A antibodies and cell hashing with 10x Single Cell 30 Reagent
Kit v3.1. 50mL cell suspension with 1x106 cells were resuspended in staining buffer (2% BSA, Jackson Immuno Research; 0.01%

Tween-20, Sigma-Aldrich; 1x DPBS, GIBCO) and 5 mL Human TruStain FcXTM FcBlocking (Biolegend) reagent were added. The

blocking was performed for 10min at 4�C. In the next step 1mg unique TotalSeq-A antibody was added to each sample and incubated

for 30min at 4�C. After the incubation time 1.5mL staining buffer were added and centrifuged for 5min at 350g and 4�C.Washing was

repeated for a total of 3 washes. Subsequently, the cells were resuspended in an appropriate volume of 1x DPBS (GIBCO), passed

through a 40mmmesh (FlowmiTM Cell Strainer, Merck) and counted, using a Neubauer Hemocytometer (Marienfeld). Cell counts were
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adjusted and hashtagged cells were pooled equally. The cell suspension was super-loaded, with 50,000 cells, in the ChromiumTM

Controller for partitioning single cells into nanoliter-scale Gel Bead-In-Emulsions (GEMs). Single Cell 30 reagent kit v3.1 was used

for reverse transcription, cDNA amplification and library construction of the gene expression libraries (10x Genomics) following

the detailed protocol provided by 10x Genomics. Hashtag libraries were prepared according to the cell hashing protocol for 10x

Single Cell 30 Reagent Kit v3.1 provided by Biolegend, including primer sequences and reagent specifications. Biometra Trio Thermal

Cycler was used for amplification and incubation steps (Analytik Jena). Libraries were quantified by QubitTM 2.0 Fluorometer

(ThermoFisher) and quality was checked using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent). Sequencing was performed

in paired-end mode with a S1 and S2 flow cell (2 3 50 cycles) using NovaSeq 6000 sequencer (Illumina).

BD Rhapsody single-cell RNA-seq
Whole transcriptome analyses, using the BDRhapsody Single-Cell Analysis System (BD, Biosciences) were performed onPBMCand

whole blood samples prepared as described above. Cells from each sample were labeled with sample tags (BD Human Single-Cell

Multiplexing Kit) following the manufacturer’s protocol. Briefly, a total number of 1x106 cells were resuspended in 180ml of Stain

Buffer (FBS) (BD PharMingen). The sample tags were added to the respective samples and incubated for 20min at room temperature.

After incubation, 200ml stain buffer was added to each sample and centrifuged for 5min at 300 g and 4�C. Samples were washed one

more time. Subsequently cells were resuspended in 300ml of cold BD Sample Buffer and counted using Improved Neubauer Hemo-

cytometer (INCYTO). Labeled samples were pooled equally in 650ml cold BD Sample Buffer. For each pooled sample two BD Rhap-

sody cartridges were super-loaded with approximately 60,000 cells each. Single cells were isolated using Single-Cell Capture and

cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according to themanufacturer’s recommendations (BD

Biosciences). cDNA libraries were prepared using the BDRhapsodyWhole Transcriptome Analysis Amplification Kit following the BD

Rhapsody System mRNAWhole Transcriptome Analysis (WTA) and Sample Tag Library Preparation Protocol (BD Biosciences). The

final libraries were quantified using a Qubit Fluorometer with the Qubit dsDNA HS Kit (ThermoFisher) and the size-distribution was

measured using the Agilent high sensitivity D5000 assay on a TapeStation 4200 system (Agilent technologies). Sequencing was per-

formed in paired-end mode (2*75 cycles) on a NovaSeq 6000 and NextSeq 500 System (Illumina) with NovaSeq 6000 S2 Reagent Kit

(200 cycles) and NextSeq 500/550 High Output Kit v2.5 (150 Cycles) chemistry, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing of 10x Genomics Chromium scRNA-seq data
CellRanger v3.1.0 (10x Genomics) was used to process scRNA-seq. To generate a digital gene expression (DGE) matrix for each

sample, we mapped their reads to a combined reference of GRCh38 genome and SARS-CoV-2 genome and recorded the number

of UMIs for each gene in each cell.

Data pre-processing of BD Rhapsody scRNA-seq data
After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-end scRNA-seq reads were filtered

for valid cell barcodes using the barcode whitelist provided by BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adaptor se-

quenceswhere needed and to filter reads for a PHRED score of 20 or above (Martin, 2011). Then, STAR 2.6.1bwas used for alignment

against the Gencode v27 reference genome (Dobin et al., 2013). Dropseq-tools 2.0.0 were used to quantify gene expression and

collapse to UMI count data (https://github.com/broadinstitute/Drop-seq/). For hashtag-oligo based demultiplexing of single-cell

transcriptomes and subsequent assignment of cell barcodes to their sample of origin the respective multiplexing tag sequences

were added to the reference genome and quantified as well.

ScRNA-seq data analysis of 10x Chromium data of cohort 1
ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was performed using the R/Seurat

package 3.1.4 (Butler et al., 2018; Hafemeister and Satija, 2019). Demultiplexing of cells was performed using the HTODemux func-

tion implemented in Seurat.

Data quality control
We excluded cells based on the following quality criteria: more than 25%mitochondrial reads, more than 25%HBA/HBB gene reads,

less than 250 expressed genes or more than 5,000 expressed genes and less than 500 detected transcripts. We further excluded

genes that were expressed in less than five cells. In addition, mitochondrial genes have been excluded from further analysis.

Normalization
LogNormalization (Seurat function) was applied before downstream analysis. The original gene counts for each cell were normalized

by total UMI counts, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1).
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Data integration
After normalization, the count data was scaled regressing for total UMI counts and principal component analysis (PCA) was per-

formed based on the 2,000 most variable features identified using the vst method implemented in Seurat. Subsequently, the

scRNA-seq data from cohort 1 was integrated with publicly available 10x scRNaseq data of healthy controls using the ‘harmony’

algorithm (Korsunsky et al., 2019) based on the first 20 principal components to correct for technical differences in the gene expres-

sion counts of the different data sources (Control samples from Reyes et al. (2020), 10x v3.1 PBMC benchmarking data from healthy

controls and 10x v3.1 scRNA-seq data from cohort 1). We downloaded the count matrices for the publicly available scRNA-seq data

and filtered the cells using the above-mentioned quality criteria prior to data integration. For two-dimensional data visualization we

performed UMAP based on the first 20 dimensions of the ‘harmony’ data reduction. The cells were clustered using the Louvain al-

gorithm based on the first 20 ‘harmony’’ dimensions with a resolution of 0.4.

Differential expression tests and cluster marker genes
Differential expression (DE) tests were performed using FindMarkers/FindAllMarkers functions in Seurat with Wilcoxon Rank Sum

test. Genes with > 0.25 log-fold changes, at least 25% expressed in tested groups, and Bonferroni-corrected p values < 0.05

were regarded as significantly differentially expressed genes (DEGs). Cluster marker genes were identified by applying the DE tests

for upregulated genes between cells in one cluster to all other clusters in the dataset. Top ranked genes (by log-fold changes) from

each cluster of interest were extracted for further illustration. The exact number and definition of samples used in the analysis are

specified in the legend of Figure 2A and summarized in Table S1.

Cluster annotation
Clusters were annotated based on a double-checking strategy: 1) by comparing cluster marker genes with public sources, and 2) by

directly visualizing the expression pattern of CyTOF marker genes.

GO enrichment analysis
Significant DEGs between each monocyte cluster and the rest of monocyte subpopulations were identified by FindMarkers function

from the Seurat package using Wilcoxon Rank Sum test statistics for genes expressed in at least 25% of all monocyte clusters. P

values were corrected for multiple testing using Bonferroni correction and genes with corrected p values lower or equal 0.05 have

been taken as significant DEGs for GO enrichment test by R package/ClusterProfiler v.3.10.1 (Yu et al., 2012).

Correlation analysis of marker genes for monocyte and neutrophils between cohort 1 and 2
To systematically compare the similarity of marker gene expression in the identified monocyte/neutrophils subpopulations between

the two cohorts, the Spearman correlation coefficients were calculated based on the union of the top 50marker genes of each cluster

sorted by fold change in the two cohorts, based on their average expression of all cells in the specific subpopulation. The pairwise

comparisons were performed, and the correlation coefficients were displayed using a heatmap.

Subset analysis of the neutrophils within the PBMC dataset of cohort 1
The neutrophil space was investigated by subsetting the PBMCdataset to those clusters identified as neutrophils and immature neu-

trophils (cluster 5 and 6). Within those subsets, we selected top 2,000 variable genes and repeated the clustering using the SNN-

graph based Louvain algorithm mentioned above with a resolution of 0.6. The dimensionality of the data was then reduced to 10

PCs, which served as input for the UMAP calculation. To categorize the observed neutrophil clusters into the respective cell cycle

states, we applied the CellCycleScoring function of Seurat and visualized the results as pie charts.

A gene signature enrichment analysis using the ‘AUCell’ method (Aibar et al., 2017) was applied to link observed neutrophil clusters

to existing studies and neutrophils of cohort 2. We set the threshold for the calculation of the area under the curve (AUC) to marker

genes from collected publications and top 30 of the rankedmaker genes from each of neutrophil clusters from cohort 2. The resulting

AUC values were normalized the maximum possible AUC to 1 and subsequently visualized in violin plots or UMAP plots.

ScRNA-seq data analysis of Rhapsody data of cohort 2
General steps for Rhapsody data downstream analysis

ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was performed using the R/Seurat

package 3.1.2 (Butler et al., 2018). Demultiplexing of cells was performed using theHTODemux function implemented in Seurat. After

identification of singlets, cells withmore than 25%mitochondrial reads, less than 250 expressed genes ormore than 5,000 expressed

genes and less than 500 detected transcripts were excluded from the analysis and only those genes present in more than 5 cells were

considered for downstream analysis. The following normalization, scaling and dimensionality reduction steps were performed inde-

pendently for each of the data subsets used for the different analyses as indicated respectively. In general, gene expression values

were normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed by log10(TP10k+1). Subse-

quently, the data was scaled, centered and regressed against the number of detected transcripts per cell to correct for heterogeneity

associated with differences in sequencing depth. For dimensionality reduction, PCA was performed on the top 2,000 variable genes

identified using the vst method implemented in Seurat. Subsequently, UMAP was used for two-dimensional representation of the
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data structure. Cell type annotation was based on the respective clustering results combined with data-driven cell type classification

algorithms based on reference transcriptome data (Aran et al., 2019) and expression of known marker genes.

scRNA-seq analysis of the complete BDRhapsody dataset of cohort 2 including data from frozen and fresh PBMCand
whole blood
ScRNA-seq count data of 229,731 cells derived from fresh and frozen PBMC samples purified by density gradient centrifugation and

whole blood after erythrocyte lysis of cohort 2 (Bonn, BD Rhapsody) were combined, normalized and scaled as described above (see

Figure S6A). After variable gene selection and PCA, UMAP was performed based on the first 20 principal components (PCs). No

batch correction or data integration strategies were applied to the data. Visualization of the cells (Figure S6A) showed overlay of cells

of the same type (e.g., T cells clustered within the same cluster, irrespective of cell isolation procedure). In other words, cell type dis-

tribution was unaffected by the technical differences in sample handling. Data quality and information content was visualized as violin

plots showing the number of detected genes, transcripts (UMIs) and genic reads per sample handling strategy split by PBMC and

granulocyte fraction.

scRNA-seq analysis of fresh and frozen PBMC samples
ScRNA-seq count data of 139,848 cells derived from fresh and frozen PBMC samples of cohort 2 (Bonn, BD Rhapsody) purified by

density gradient centrifugation were normalized and scaled as described above. After variable gene selection and PCA, UMAP was

performed and the cells were clustered using the Louvain algorithm based on the first 20 PCs and a resolution of 0.4. Cluster identities

were determined by reference-based cell classification and inference of cluster-specific marker genes using the Wilcoxon rank sum

test using the following cutoffs: genes have to be expressed in more than 20% of the cells of the respective cluster, exceed a log-

arithmic fold change cutoff to at least 0.2, and exhibited a difference of > 10% in the detection between two clusters. The exact num-

ber and definition of samples used in the analysis are specified in the legend of Figure 2D and summarized in Table S1.
Quantification of the percentages of cell clusters in the PBMC scRNA-seq data of both cohorts separated by
disease group
To compare shifts in the monocyte and neutrophil populations in the PBMC compartment of COVID-19 patients, the percentages of

the cellular subsets - as identified by clustering and cluster annotation explained above for the two independent scRNA-seq datasets

(cohort 1 and cohort 2) - of the total number of PBMC in each dataset were quantified per sample and visualized together in boxplots.

To determine the statistical significance of differences in cell proportions between the different conditions, a Dirichlet regression

model was used, due to the fact that the proportions are not independent of one another. The R/RDirichletReg (Maier, 2014) package

was used. The p values were corrected for multiple testing using the Benjamini-Hochberg procedure.

Subset analysis of the monocytes within the PBMC dataset of cohort 2
The monocyte space was investigated by subsetting the PBMC dataset to those clusters identified as monocytes (cluster 0-4),

removing cells with strong multi-lineage marker expressions, and repeating the variable gene selection (top 2,000 variable genes),

regression for the number of UMIs and scaling as described above. The dimensionality of the data was then reduced to 8 PCs, which

served as input for the UMAP calculation. The SNN-graph based Louvain clustering of the monocytes was performed using a res-

olution of 0.2. Marker genes per cluster were calculated using the Wilcoxon rank sum test using the following cutoffs: genes have to

be expressed in > 20%of the cells, exceed a logarithmic fold change cutoff to at least 0.25, and exhibited a difference of > 10% in the

detection between two clusters. The exact number and definition of samples used in the analysis are specified in the legend of Fig-

ure 4A and summarized in Table S1.

Time kinetics analysis of identified monocyte clusters
For each patient and time point of sample collection, the proportional occupancy of the monocyte clusters was calculated, and the

relative proportions were subsequently visualized as a function of time.

Analysis of scRNA-seq data from fresh PBMC and whole blood samples of cohort 2
ScRNA-seq count data derived from fresh PBMC samples purified by density gradient centrifugation and whole blood after eryth-

rocyte lysis of cohort 2 (BD Rhapsody) were normalized, scaled, and regressed for the number of UMI per cell as described above.

After PCA based on the top 2,000 variable genes, UMAP was performed using the first 30 PCs. Cell clusters were determined using

Louvain clustering implemented in Seurat based on the first 30 principle components and a resolution of 0.8. Cluster identities were

assigned as detailed above using reference-based classification and marker gene expression. Subsequently, the dataset was sub-

setted for whole blood samples after erythrocyte lysis and clusters identified as neutrophils and immature neutrophils, and re-scaled

and regressed. After PCA on the top 2,000 variable genes, the neutrophil subset data was further processed using the data integra-

tion approach implemented in Seurat (Stuart et al., 2019) based on the first 30 PCs removing potential technical biases of separate

experimental runs. UMAP and clustering were performed as described above on the top 12 PCs using a resolution of 0.3. Differen-

tially expressed genes between clusters were defined using aWilcoxon rank sum test for differential gene expression implemented in
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Seurat. Genes had to be expressed in > 10% of the cells of a cluster, exceed a logarithmic threshold > 0.1. The exact number and

definition of samples used in the analysis are specified in the legend of Figure 7A and summarized in Table S1.

Quantification of percentages of cell subsets in whole blood scRNA-seq data of cohort 2
After cell type classification of the combined scRNA-seq dataset of fresh PBMC and whole blood samples of cohort 2 described

above, 89,883 cells derived from whole blood samples after erythrocyte lysis were subsetted. Percentages of cell subsets in those

whole blood samples of the total number of cells were quantified per sample and visualized in boxplots separated by disease stage

and group.

Confusion matrix
For each cluster of neutrophils, the relative proportion across disease severity and time point was visualized as a fraction of samples

from the respective condition contributing to the cluster.

GO enrichment
Gene set enrichment was performed on gene sets from the Kyoto Encyclopedia of Genes andGenomes (KEGG) database (Kanehisa,

2019), Hallmark gene sets (Liberzon et al., 2015) and Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 2019) using the R

package/ClusterProfiler v.3.10.1 (Yu et al., 2012).

Cell cycle state analysis of scRNA-seq data
To categorize the cells within the neutrophil clusters into the respective cell cycle states, we applied theCellCycleScoring function of

Seurat and visualized the results as pie charts.

Trajectory analysis
Trajectory analysis was performed using the destiny algorithm v3.0.1 (Angerer et al., 2016). In brief, the neutrophil space was sub-

setted to only severe patients (early and late) and only themost prominent clusters of the latter (clusters 1,2,6,8). The normalized data

were scaled and regressed for UMIs and a diffusion map was calculated based on the top 2,000 variable genes with a sum of at least

10 counts over all cells. Based on the diffusion map, a diffusion pseudo time was calculated to infer a transition probability between

the different cell states of the neutrophils. Subsequently, the density of the clusters along the pseudotime and marker gene expres-

sion for each cluster were visualized.

Enrichment of gene sets was performed using the ‘AUCell’ method (Aibar et al., 2017) implemented in the package (version 1.4.1) in

R. We set the threshold for the calculation of the AUC to the top 3% of the ranked genes and normalized the maximum possible AUC

to 1. The resulting AUC values were subsequently visualized in violin plots or UMAP plots.

Transcription factor prediction analysis
The Cytoscape (version v3.7.1, https://doi.org/10.1101/gr.1239303) plug-in iRegulon (Janky et al., 2014) (version 1.3) was used to

predict the transcription factors potentially regulating cluster-specifically expressed gene sets in the neutrophil andmonocyte subset

analysis in cohort 2. The genomic regions for TF-motif search were limited to 10kb around the respective transcriptional start sites

and filtered for predicted TFs with a normalized enrichment score > 4.0. Next, we filtered for TFs, which exceeded a cumulative

normalized expression cutoff of 50 in the respective cluster. Subsequently, we selected transcription factors of known relevance

in the context of neutrophil and monocyte biology and constructed a network linking target genes among the cluster-specifically ex-

pressed marker genes and their predicted and expressed regulators for visualization in Cytoscape.

Mass cytometry data analysis
Cytobank.org was used for de-barcoding of individual samples andmanually gating of cell events to remove doublets, normalization

beads and dead cells (Kotecha et al., 2010). Per channel intensity ranges were aligned between batches of measurements using a

reference sample acquired across all batches and the BatchAdjust function to compute scaling factors at the 95th event percentiles

(Schuyler et al., 2019). For semi-automated gating of populations of interest, high-resolution SPADE clustering was conducted on all

indicated asinh-transformed markers (Table S2) with 400 target nodes (Qiu et al., 2011). Individual SPADE nodes were then aggre-

gated and annotated to cell subsets (bubbles) according to the expression of lineage-specific differentiation markers. Clustering re-

sults and FCS files were subsequently loaded into the R CytoML/flowCore environment (10.18129/B9.bioc.CytoML, 10.18129/

B9.bioc.flowCore) for further downstream analyses. To generate UMAP representations all events of a given population of interest

were down-sampled to 70,000 cells and then embedded using the tumap function (R uwot package, https://cran.r-project.org/web/

packages/uwot/index.html) parameterized by local neighborhood 50, learning rate 0.5, and using the indicatedmarkers (Table S2) as

input dimensions. For statistical analysis of cell population abundances, we fitted a generalized linear mixed-effects model (GLMM)

for each population using the lme4 package (Nowicka et al., 2017). P values resulting from differential abundance testing (via R mult-

comp and lsmeans packages) were adjusted using the Benjamini-Hochberg procedure and an FDR-cutoff of 5% across all clusters/

subsets and between-group comparisons (Hothorn et al., 2008; Lenth, 2016). Additionally, indicated surface marker positive popu-

lations were exported from Cytobank and analyzed using prism 8. Kruskal-Wallis and Dunn’s multiple comparison test was used to
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compare differences in proportions between patient groups, whereas mixed-effect-analysis and Sidak’s multiple comparison test

was applied to report time-dependent differences. The exact numbers and definitions of samples used in the analyses are specified

in the respective figure legends and summarized in Table S1.

Data Analysis of Flow Cytometry Data
Flow cytometry data analysis was performed with FlowJo V10.6.1. Cell type was defined as granulocytes (CD45+, CD66b+), non-

classical monocytes (CD45+, CD66b-, CD19-, CD3-, CD56-, CD14lo, CD16+). Relative cell percentage or mean fluorescence intensity

(MFI) was used for visualization and statistical analysis was done using unpaired t test.

Data visualization
In general, the R packages Seurat and the ggplot2 package (version 3.1.0) (Wickham, 2016) were used to generate figures. For visu-

alization of mass cytometry data, cluster minimum-spanning trees were rendered using Cytobank, the ComplexHeatmap package

(Gu et al., 2016) was used to display subset phenotypes and GraphPad Prism to generate boxplots of quantitative data.

ADDITIONAL RESOURCES

Part of the patients included in this study have been recruited within the clinical trial DRKS00021688, registered at the German reg-

istry for clinical studies (Kurth et al., 2020).

In addition to the deposition of the raw sequencing data on EGA,we provide an interactive platform for data inspection and analysis

via FASTGenomics. The FASTGenomics platform (fastgenomics.org) provides processed count tables of the datasets generated in

this study as well as key analytical results, such as UMAP coordinates and cluster identities, and the code written to analyze the

respective data.
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Figure S1. Overview of Sample Analysis Pipeline, Major Leukocyte Lineages Definition, and Quantification by CyTOF and MCFC, Related to

Figure 1

A, Overview of the analysis pipeline for scRNA-seq and proteomics of COVID-19 samples.

B, High resolution SPADE analysis with 400 target nodes and individual nodes aggregated to the indicated major immune cell lineages according to the

expression of lineage specific cell marker such as CD14 for monocytes and CD15 for neutrophils of whole blood samples collected from FLI patients, COVID-19

patients and controls and stained with CyTOF panel 1 and 2, respectively.

C, Boxplots of the composition of total granulocytes and non-classical monocytes within whole blood samples from the second cohort of COVID-19 patients

showing either mild (n = 3) or severe disease (n = 7) as well as controls (n = 11) measured by flow cytometry. Statistical analysis was performed using unpaired t

test. **p < 0.01, ***p < 0.001.
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Figure S2. Cluster-Specific Marker Gene Expression Shows Inflammatory Activation Signatures of Monocyte Subsets and the Appearance

of Neutrophil Subsets in the PBMC Fraction, Related to Figure 2

(A), Dot plots of the top 5 marker genes sorted by average log fold change determined for the clusters depicted in Figure 2A.

(B), Dot plot representation of the top 5 marker genes sorted by average log fold change determined for the clusters depicted in Figure 2D.

C: Heatmap of the Spearman correlation coefficients between myeloid cell subsets in two cohorts, based on the union of top 50 marker genes per cluster.
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Figure S3. Transcriptional Differences of Monocytes from Mild and Severe COVID-19, Related to Figure 4

A, Dot plot of the top 10 marker genes sorted by average log fold change of the clusters within the monocyte space of cohort 1 (related to Figure 2, Table S4).

B, Gene ontology enrichment analysis based on the complete marker genes obtained for each monocyte cluster of cohort 1, showing the top 10 significant terms

enriched in each cluster ranked by adjusted p values.

C, Back-mapping of monocyte clusters of cohort 2 (Figure 4C) onto the PBMCUMAP of cohort 2 (Figure 2D). The legend shows the association of the colors to the

clusters together with the labeling of the clusters based on expressed marker genes (according to Figures 2 and S3D–S3F).

D, Violin plots of marker gene expression in the monocyte clusters identified in the complete PBMC space of cohort 2 (Figures 2C and 2D)

E, Dot plot of the top 10 marker genes sorted by average log fold change calculated for the monocyte clusters (Figure 4C).

F, Violin plots of the IFI6 and ISG15 expression in cells ofmild and severe patients, additionally divided into early (1-10 days after disease onset) and late (> 10 days

after disease onset). Statistical analysis was performed using Wilcoxon Rank Sum test adjusted with the Bonferroni method, ****p < 0.0001.

G, Violin plots showing the time-dependent change ofHLA-DRA andHLA-DRB1 expression in themonocyte population of cohort 1 (mild: n = 4; severe: n = 4) and

cohort 2 (mild: n = 5; severe: n = 7). Mild samples are colored in yellow, severe samples in red and controls in blue, with the latter shown as reference violin plots

representing the expression of all control monocytes in the respective cohort (cohort 1: n = 22, cohort 2: n = 6).
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Figure S4. Additional Analysis of Dysfunctional Neutrophils in PBMC Fraction, Related to Figure 5

A, Dot plot of marker genes associated with immature neutrophils (pro- and pre-neutrophils), and mature neutrophils.

B, Pie charts showing the proportion of cells predicted to be in a given cell cycle stage. The numbers refer to the cell clusters presented in panel A.
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Figure S5. Longitudinal Analysis of Neutrophil and Monocyte Cell Populations, Related to Figure 6

A, Box andwhisker (10-90 percentile) plots of time-dependent differences in total granulocytes andmonocytes, non-classical monocytes and correlation analysis

between days post-symptom onset and proportion of non-classical monocytes.

B, Box and whisker (10-90 percentile) plots of time-dependent differences in main neutrophil cell cluster 3, 5, 6 and 7 in cohort 1.

(legend continued on next page)
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C, Box and whisker (10-90 percentile) plots of time-dependent differences in proportions of CD34+, CD11blo/-CD16-, CD64+, CD62L+, CD10-CD11blo/-CD16-

(reported from panel 1) and PD-L1+ neutrophils in cohort 1.

D, Box and whisker (10-90 percentile) plots of time-dependent differences in main monocyte cluster 1, 10 (belonging to CD14hiCD16- classical monocytes),

cluster 11 and 3 (belonging to CD14hiCD16+ intermediate monocytes) in cohort 1.

E, Box and whisker (10-90 percentile) plots of time-dependent differences in CXCR3+, HLA-DRhiCD11chi and CD226+CD69+ monocytes.

(F), Box and whisker (10-90 percentile) plot showing time-dependent differences in HLA-DRhiCD11chi monocytes in cohort 2.

Measurements in cohort 1 were done applying mass cytometry on whole blood samples distinguishing between COVID-19 patients with mild (days 0-10: n = 6,

days 11-30: n = 12) or severe disease (days 0-10: n = 9, days 11-30: n = 13) course. Mixed-effect-analysis and Sidak’s multiple comparison test was used to

calculate significant differences

Measurements in cohort 2 were done with flow cytometry on 26 whole blood samples from COVID-19 patients showing either mild (n = 8) or severe disease (n =

18) course as well as 11 samples from age-matched controls (n = 10).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Figure S6. Overview of scRNA-Seq Dataset from Cohort 2 and Additional Characterization of Neutrophils, Related to Figure 7

(A), UMAP (on the left) of the complete scRNA-seq dataset from cohort 2 (frozen PBMC, fresh PBMC, fresh whole blood), encompassing 98 samples from 16

controls, 8 mild, and 10 severe COVID-19 patients. Right panel: violin plots of the number of genic reads, transcripts and genes expressed in the PBMC (right)

versus the granulocyte fraction (left) across the different datasets of cohort 2. The UMAP is split by experimental condition and the classified granulocyte and

PBMC fractions are marked separately. The table below indicates the number of cells per experimental condition separated by control, COVID-19 mild and

COVID-19 severe. The numbers of samples are indicated in brackets.

(B), Box and whisker plots (25–75 percentile) of cell type frequencies identified by scRNA-seq in fresh whole blood samples after erythrocyte lysis comparing 16

samples from 15 controls, 6 from 5 mild COVID-19 and 12 from 4 severe COVID-19 patients.

(C), Comparison between cell frequencies identified by scRNA-seq and MCFC. Pearson’s correlation between the mean of each cell population measured in

MCFC (y axis) and by scRNA-seq of R2 = 0.96with p = 0.0098 (left). The stacked bar chart sorted by disease severity shows the cell type frequency for controls (n =

16), mild (n = 5) and severe COVID-19 samples (n = 18) split by scRNA-seq and MCFC.

(D), Dot plot of literature-based marker genes classifying different neutrophil subsets.

(E), UMAP of neutrophils showing the scaled expression of MME(CD10) and CXCR4 with enrichment in the control-specific clusters 0.

(F), UMAP of AUCell-based enrichment of gene signatures derived from the neutrophil clusters from cohort 2 on the UMAP visualization of cohort 1. The UMAP is

colored by the ‘Area Under the Curve’ (AUC) scores of each cell.

(G), Dot plot visualization of selected significantly enriched Gene Ontology terms and KEGG pathways for each cluster from the neutrophil space. The dots are

colored by their adjusted p value and the size of the dots is defined by the number of genes found in the Gene Ontology term.

(H), Network representation of marker genes and their predicted upstream transcriptional regulators for neutrophil clusters 6 (pre-Neutrophils) and 8 (pro-

Neutrophils). Edges represent predicted transcriptional regulation. Transcription factors in the inner circle and their predicted target genes in the outer circle are

represented as nodes sized and colored according to the scaled expression level across all clusters. Selected genes and transcription factors were labeled based

on connectivity and literature mining.

(I), Diffusion map dimensionality reduction of the main neutrophil clusters 8, 6, 2, and 1 from the severe COVID-19 patients (top) and diffusion pseudotime

visualized on the diffusion map indicating the transition probability of the different clusters in the following order: 8 - 6 - 2 - 1 (bottom).

(J), Genes specific for each cluster (HSP90AA1, CD274(PD-L1), CD177, MME(CD10), ARG1) visualized along the diffusion pseudotime (top) with the density of

each cluster along the pseudotime (bottom) highlighting the proposed order of differentiation of the different neutrophil subsets.
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