
Historically, natural products (NPs) have played a key 
role in drug discovery, especially for cancer and infec-
tious diseases1,2, but also in other therapeutic areas, 
including cardiovascular diseases (for example, statins) 
and multiple sclerosis (for example, fingolimod)3–5.

NPs offer special features in comparison with con-
ventional synthetic molecules, which confer both advan-
tages and challenges for the drug discovery process. 
NPs are characterized by enormous scaffold diversity 
and structural complexity. They typically have a higher 
molecular mass, a larger number of sp3 carbon atoms and 
oxygen atoms but fewer nitrogen and halogen atoms, 
higher numbers of H- bond acceptors and donors, lower 
calculated octanol–water partition coefficients (cLogP 
values, indicating higher hydrophilicity) and greater 
molecular rigidity compared with synthetic compound 
libraries1,6–9. These differences can be advantageous; for 
example, the higher rigidity of NPs can be valuable in 
drug discovery tackling protein–protein interactions10. 
Indeed, NPs are a major source of oral drugs ‘beyond 
Lipinski’s rule of five’11. The increasing significance of 
drugs not conforming to this rule is illustrated by the 
increase in molecular mass of approved oral drugs over 
the past 20 years12. NPs are structurally ‘optimized’ 
by evolution to serve particular biological functions1, 
including the regulation of endogenous defence mech-
anisms and the interaction (often competition) with 
other organisms, which explains their high relevance for 
infectious diseases and cancer. Furthermore, their use 
in traditional medicine may provide insights regarding 
efficacy and safety. Overall, the NP pool is enriched with 

‘bioactive’ compounds covering a wider area of chemical 
space compared with typical synthetic small- molecule 
libraries13.

Despite these advantages and multiple successful 
drug discovery examples, several drawbacks of NPs have 
led pharmaceutical companies to reduce NP- based drug 
discovery programmes. NP screens typically involve a 
library of extracts from natural sources (Fig. 1), which 
may not be compatible with traditional target- based 
assays14. Identifying the bioactive compounds of inter-
est can be challenging, and dereplication tools have to 
be applied to avoid rediscovery of known compounds. 
Accessing sufficient biological material to isolate and 
characterize a bioactive NP may also be challenging15. 
Furthermore, gaining intellectual property (IP) rights 
for (unmodified) NPs exhibiting relevant bioactivities 
can be a hurdle, since naturally occurring compounds 
in their original form may not always be patented (legal 
frameworks vary between countries and are evolving)16, 
although simple derivatives can be patent- protected 
(Box 1). An additional layer of complexity relates to the 
regulations defining the need for benefit sharing with 
countries of origin of the biological material, framed 
in the United Nations 1992 Convention on Biological 
Diversity and the Nagoya Protocol, which entered into 
force in 2014 (reF.17), as well as recent developments con-
cerning benefit sharing linked to use of marine genetic 
resources18.

Although the complexity of NP structures can be 
advantageous, the generation of structural analogues to 
explore structure–activity relationships and to optimize 

sp3 carbon atoms
Tetravalent carbon atoms 
forming single covalent bonds 
with other atoms within the 
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NP leads can be challenging, particularly if synthetic 
routes are difficult. Also, NP- based drug leads are 
often identified by phenotypic assays, and deconvolu-
tion of their molecular mechanisms of action can be 
time- consuming19. Fortunately, there have been sub-
stantial advances20 both in the development of screening 
assays (for example, harnessing the potential of induced 
pluripotent stem cells and gene editing technologies) 
and in strategies to identify the modes of action of active 
compounds (reviewed previously21–23).

Here, we discuss recent technological and scien-
tific advances that may help to overcome challenges in 
NP- based drug discovery, with an emphasis on three 

areas: analytical techniques, genome mining and engi-
neering, and cultivation systems. In the concluding sec-
tion, we highlight promising future directions for NP 
drug discovery.

Application of analytical techniques
Classical NP- based drug research starts with biological 
screening of ‘crude’ extracts to identify a bioactive ‘hit’ 
extract, which is further fractionated to isolate the active 
NPs. Bioactivity- guided isolation is a laborious process 
with a number of limitations, but various strategies and 
technologies can be used to address some of them (Fig. 2). 
For example, to create libraries that are compatible 
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Not possible to culture the
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• New methods for in situ
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phenotypic assays
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Fig. 1 | outline of traditional bioactivity-guided isolation steps in natural product drug discovery. Steps in the  
process are shown in purple boxes, with associated key limitations shown in red boxes and advances that are helping to 
address these limitations in modern natural product (NP)- based drug discovery shown in green boxes. The process begins 
with extraction of NPs from organisms such as bacteria. The choice of extraction method determines which compound 
classes will be present in the extract (for example, the use of more polar solvents will result in a higher abundance of polar 
compounds in the crude extract). To maximize the diversity of the extracted NPs, the biological material can be subjected 
to extraction with several solvents of different polarity. Following the identification of a crude extract with promising 
pharmacological activity, the next step is its (often multiple) consecutive bioactivity- guided fractionation until the pure 
bioactive compounds are isolated. A key limitation for the potential of this approach to identify novel NPs is that many 
potential source organisms cannot be cultured or stop producing relevant NPs when taken out of their natural habitat. 
These limitations are being addressed through development of new methods for culturing, for in situ analysis, for NP 
synthesis induction and for heterologous expression of biosynthetic genes. At the crude extract step, challenges include 
the presence in the extracts of NPs that are already known, NPs that do not have drug- like properties or insufficient 
amounts of NPs for characterization. These challenges can be addressed through the development of methods for 
dereplication, extraction and pre- fractionation of extracts. Finally, at the last stage, when bioactive compounds are 
identified by phenotypic assays, significant time and effort are typically needed to identify the affected molecular targets. 
This challenge can be addressed by the development of methods for accelerated elucidation of molecular modes of action, 
such as the nematic protein organization technique (NPOT), drug affinity responsive target stability (DARTS), stable isotope 
labelling with amino acids in cell culture and pulse proteolysis (SILAC- PP), the cellular thermal shift assay (CETSA) and an 
extension known as thermal proteome profiling (TPP), stability of proteins from rates of oxidation (SPROX), the similarity 
ensemble approach (SEA) and bioinformatics- based analysis of connectivity (connectivity map, CMAP)23,189–192.

Lipinski’s rule of five
This guideline for the likelihood 
of a compound having oral 
bioavailability is based on 
several characteristics 
containing the number 5.  
it predicts that a molecule is 
likely to have poor absorption 
or permeation if it has more 
than one of the following 
characteristics: there are  
>5 H- bond donors and  
>10 H- bond acceptors; the 
molecular weight is >500;  
or the partition coefficient 
LogP is >5. Notably, natural 
products were identified as 
common exceptions at the 
time of publication in 1997.

Dereplication
Pharmacological screening of 
natural product extracts yields 
hits potentially containing 
multiple natural products that 
need to be considered for 
further study to identify  
the bioactive compounds. 
Dereplication is the process of 
recognizing and excluding from 
further study such hit mixtures 
that contain already known 
bioactive compounds.

Phenotypic assays
Assays that rely on the ability 
of tested compounds to exert 
desired phenotypic changes  
in cells, isolated tissues, organs 
or animals. They offer a 
complementary strategy  
to target- based assays for 
identifying new potential drugs.
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with high- throughput screening, crude extracts can be 
pre- fractionated into sub- fractions that are more suit-
able for automated liquid handling systems. In addi-
tion, fractionation methods can be adjusted so that 
sub- fractions preferentially contain compounds with 
drug- like properties (typically moderate hydrophilicity). 
Such approaches can increase the number of hits com-
pared with using crude extracts, as well as enabling more 
efficient follow- up of promising hits24.

Metabolomics was developed as an approach to 
simultaneously analyse multiple metabolites in biologi-
cal samples. Enabled by technological developments in 
chromatography and spectrometry, metabolomics was 
historically applied first in other research fields, such as 
biomedical and agricultural sciences2. Advances in the 
analytical instrumentation used in NP research25,26, cou-
pled with computational approaches that can generate 
plausible NP analogue structures and their respective 
simulated spectra27, have also enabled application of 
‘omics’ approaches such as metabolomics in NP- based 
drug discovery. Metabolomics can provide accurate infor-
mation on the metabolite composition in NP extracts, 
thus helping to prioritize NPs for isolation, to accelerate 
dereplication28,29 and to annotate unknown analogues 
and new NP scaffolds. Moreover, metabolomics can 
detect differences between metabolite compositions in 
various physiological states of producing organisms and 
enable the generation of hypotheses to explain them,  
and can also provide extensive metabolite profiles to 
underpin phenotypic characterization at the molecular 
level30. Both options are very useful in understanding the 
molecular mechanisms of action of NPs.

For metabolite profiling, NP extracts are analysed by 
NMR spectroscopy or high- resolution mass spectrom-
etry (HRMS), or respective combined methods involv-
ing upstream liquid chromatography (LC)31,32, such as  
LC–HRMS, which can separate numerous isomers pres-
ent in NP extracts33. Moreover, such combined methods 
might integrate HRMS and NMR, allowing the simulta-
neous use of the advantages of both techiques34,35. NMR 
analysis of NP extracts is simple and reproducible, and 
provides direct quantitative information and detailed 
structural information, although it has relatively low sen-
sitivity, meaning that it generally enables profiling only 
of major constituents33. The applications of NMR in NP 
research are versatile36 and the technique is used both 
directly for metabolomics of unfractionated NP extracts 
and for structural characterization of compounds and 
fractions obtained with appropriate separation methods, 
most often LC. HRMS is the gold standard for qualita-
tive and quantitative metabolite profiling33 and is most 
commonly applied in combination with LC. HRMS can 
also be used in the direct infusion mode (called DIMS)37, 
whereby samples are directly profiled by MS without a 
chromatography step, or in MS imaging (MSI)38, which 
enables determination of the spatial distribution of NPs 
within living organisms. HRMS enables routine acqui-
sition of accurate molecular mass information, which 
together with appropriate heuristic filtering can pro-
vide unambiguous assignment of molecular formulae 
for hundreds to thousands of metabolites within a sin-
gle extract over a dynamic range that may exceed five 

Box 1 | Natural products that activate the KeAP1/NrF2 pathway

an example of a pathway affected by diverse natural products (NPs) is the KeaP1/NrF2 
pathway. this pathway regulates the expression of networks of genes encoding proteins 
with versatile cytoprotective functions and has essential roles in the maintenance  
of redox and protein homeostasis, mitochondrial biogenesis and the resolution of 
inflammation196–199.

activation of this pathway can protect against damage by most types of oxidants and 
pro- inflammatory agents, and it restores redox and protein homeostasis200. the pathway 
has therefore attracted attention for the development of drugs for the prevention  
and treatment of complex diseases, including neurological conditions such as  
relapsing–remitting multiple sclerosis201 and autism spectrum disorder202.

Dimethyl fumarate (DMF), the methyl ester of the NP fumarate (a tricarboxylic acid  
(tCa) cycle intermediate that is found in both animals and plants), is one of the earliest 
discovered inducers of the KeaP1/NrF2 pathway203,204. the origins of the development of 
DMF as a drug date back to the use in traditional medicine of the plant Fumaria officinalis. 
initially, fumaric acid derivatives were used for the treatment of psoriasis as it was 
thought that psoriasis is caused by a metabolic deficiency in the tCa cycle that could  
be compensated for by repletion of fumarate205. Despite this erroneous assumption,  
DMF is effective in treating psoriasis, both topically and orally, and is the active principle 
of Fumaderm, which has been used clinically for several decades in the treatment of plaque 
psoriasis in Germany. More recently, a DMF formulation developed by Biogen has been 
tested in other immunological disorders, with successful phase iii trials in multiple 
sclerosis206,207 leading to its approval by the FDa and eMa in 2013.

the isothiocyanate sulforaphane, isolated from broccoli (Brassica oleracea)208, is among 
the most potent naturally occurring inducers of the KeaP1/NrF2 pathway209 and has 
protective effects in animal models of Parkinson210, Huntington211 and alzheimer212 
diseases, traumatic brain injury213, spinal cord contusion injury214, stroke215, depression216 
and multiple sclerosis217. sulforaphane- rich broccoli extract preparations are being 
developed as preventive interventions in areas of the world with unavoidable exposure  
to environmental pollutants, such as China; the initial results of a randomized clinical trial 
showed rapid and sustained, statistically significant increases in the levels of excretion  
of the glutathione- derived conjugates of benzene and acrolein218, and a follow- up trial 
(NCt02656420) also demonstrated dose–response- dependent benzene detoxification219. 
in a placebo- controlled, double- blind, randomized clinical trial in young individuals  
(age 13–27 years) with autism spectrum disorder, sulforaphane reversed many of the 
clinical abnormalities202; these encouraging findings led to a recently completed clinical 
trial in children (age 3–12 years) (NCt02561481; results of the trial are not yet publicly 
available). an α- cyclodextrin complex of sulforaphane known as sFX-01 (developed by 
evgen Pharma) is being clinically studied for its potential to reverse resistance to endocrine 
therapies in patients with er+Her2- metastatic breast cancer (phase ii trial completed220) 
and in patients with subarachnoid haemorrhage (phase ii trial NCt02614742 recently 
completed; results not yet publicly available). Currently, a clinical trial of sFX-01 in patients 
hospitalized with COviD-19 is in its final stages of preparation.

Finally, the pentacyclic triterpenoids bardoxolone methyl (also known as rta 402) and 
omaveloxolone (rta 408), which are semi- synthetic derivatives of the NP oleanolic acid, 
are the most potent (active at nanomolar concentrations) activators of the KeaP1/NrF2 
pathway known to date221. these compounds have shown protective effects in numerous 
animal models of chronic disease222, and are currently in clinical trials for a wide range  
of indications, such as chronic kidney disease in type 2 diabetes, pulmonary arterial 
hypertension, melanoma, radiation dermatitis, ocular inflammation and Friedreich’s 
ataxia200. Most recently, bardoxolone methyl has entered a clinical trial in patients 
hospitalized with confirmed COviD-19 (NCt04494646).
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orders of magnitude31,39. However, challenges remain in 
data mining and in the unambiguous identification of 
the metabolites using various workflows relying on open 
web- based tools40.

Dereplication of secondary metabolites in bioactive 
extracts includes the determination of molecular mass 
and formula and cross- searching in the literature or 
structural NP databases with taxonomic information, 
which greatly assists the identification process. Such 
metadata, which are difficult to query in the literature, 
are often compiled in proprietary databases, such as the 
Dictionary of Natural Products, which encompasses 
all NP structures reported with links to their biological 
sources (see Related links). However, a comprehensive 
experimental tandem mass spectrometry (MS/MS) data-
base of all NPs reported to date does not exist, and a 
search for experimental spectra across various platforms 
is hindered by the lack of standardized collision energy 
conditions for fragmentation in LC–MS/MS25.

In this respect, the Global Natural Products Social 
(GNPS) molecular networking platform developed 
in the Dorrestein laboratory is an important addition 
to the toolbox41. Molecular networking organizes thou-
sands of sets of MS/MS data recorded from a given set 
of extracts and visualizes the relationship of the ana-
lytes as clusters of structurally related molecules. This 
improves the efficiency of dereplication by enabling 
annotation of isomers and analogues of a given metab-
olite in a cluster42. The recorded experimental spectra 
can be searched against putative structures and their 
corresponding predicted MS/MS spectra generated 
by tools such as competitive fragmentation modelling 
(CFM- ID)43. Based on such approaches, vast databases 
of theoretical NP spectra have been created and applied 
in dereplication44. The GNPS molecular networking 
approach has limitations, however, such as better appli-
cability to some classes of NPs than others and the 
uncertainty of structural assignment among possible 
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used for the preparation of
234 NP extracts
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bioactivity profiling of the
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LC–HRMS-based metabolomics
data also recorded with the 234
NP extracts

Integration and clustering of the
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revealed 13 unique clusters 

One of the clusters was
prioritized for further study, and
a combination of LC–MS and NMR
analysis led to the identification
of quinocinnolinomycins A–D
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156 FACs generated containing
unique BGCs from three
species from the Aspergillus
genus

b
Selected 56 FACs predicted
to contain uncharacterized
BGCs (i.e. BGCs with no
known product or well-
characterized homologue)

Metabolomics data analysed
with FAC-Score algorithm
that filters out signals present
in host extracts or in more
than one FAC strain

56 FACs transformed into the
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(A. nidulans) and NP extracts
prepared
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15 new metabolites and their
BGCs were characterized through
combination of gene deletions
within the BGCs and additional
LC–MS and NMR analysis

Fig. 2 | Applications of advanced analytical technologies empowering modern natural product-based drug discovery.  
a | An illustrative example of the application of liquid chromatography–high- resolution mass spectrometry (LC–HRMS) 
metabolomics in the screening of natural product (NP) extracts is the work of Kurita et al.58, in which 234 bacterial extracts 
were subjected to image- based phenotypic bioactivity screening and LC–HRMS metabolomics. Clustering of the resulting 
data allowed prioritization of promising extracts for further analysis, resulting in the discovery of the new NPs, quinocin-
nolinomycins A–D. b | Another illustrative example of LC–HRMS screening of NP extracts is the work of Clevenger et al.85, 
who obtained novel NP extracts through heterologous expression of fungal artificial chromosomes (FACs) containing 
uncharacterized biosynthetic gene clusters (BGCs) from diverse fungal species in Aspergillus nidulans. Analysis of the  
LC–HRMS metabolomics data with a FAC- Score algorithm directed the simultaneous discovery of 15 new NPs and  
the characterization of their BGCs.
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predicted candidates. Efforts to address such issues are 
ongoing45–47, including overlaying molecular networks of 
large NP extract libraries with taxonomic information to 
improve the confidence of annotation48. Overall, molec-
ular networking mainly allows better prioritization 
of the isolation of unknown compounds by strengthen-
ing the dereplication process and elucidating relation-
ships between NP analogues, and rigorous structure 
elucidation for NPs of interest should not be neglected.

Another useful platform for metabolite identifica-
tion is METLIN49, which includes a high- resolution 
MS/MS database with a fragment similarity search 
function that is useful for identification of unknown 
compounds. Other databases and in silico tools such 
as Compound Structure Identification (CSI): FingerID 
and Input Output Kernel Regression (IOKR) can be used 
to search available fragment ion spectra, as well as to 
generate predicted spectra of fragment ions not present 
in current databases50. A novel computational platform 
for predicting the structural identity of metabolites 
derived from any identified compound has also been 
recently reported51, which should increase the searchable 
chemical space of NPs.

To accelerate the identification of bioactive NPs in 
extracts, metabolomics data can be matched to the bio-
logical activities of these extracts52. Various chemometric 
methods such as multivariate data analysis can correlate 
the measured activity with signals in the NMR and MS 
spectra, enabling the active compounds to be traced in 
complex mixtures with no need for further bioassays53–55. 
Furthermore, several analytical modules involving dif-
ferent bioassays and detection technologies can be 
linked to allow simultaneous bioactivity evaluation and 
identification of compounds present in small amounts 
(analytical scale) in complex compound mixtures34,35.

Metabolomics data can be integrated with data 
obtained by other omics techniques such as transcrip-
tomics and proteomics and/or with imaging- based 
screens. For example, Acharya et al. used this approach 
to characterize NP- mediated interactions between a 
Micromonospora species and a Rhodococcus species56. 
In another interesting example, Kurita et al. developed a 
compound activity mapping platform for the prediction 
of identities and mechanisms of action of constituents 
from complex NP extract libraries by integrating cyto-
logical profiling57 with untargeted metabolomics data 
from a library of extracts58, and identified quinocinno-
linomycins as a new family of NPs causing endoplasmic 
reticulum stress58 (Fig. 2a).

Analytical advances that enable the profiling of 
responses to bioactive molecules at the single- cell  
level can also accelerate NP- based drug discovery. Irish, 
Bachmann, Earl and colleagues developed a high-  
throughput platform for metabolomic profiling of bio-
activity by integrating phospho- specific flow cytometry, 
single- cell chemical biology and cellular barcoding with 
metabolomic arrays (characterized chromatographic 
microtitre arrays originating from biological extracts)59. 
Using this platform, the authors studied the single- cell 
responses of bone marrow biopsy samples from patients 
with acute myeloid leukaemia following exposure to 
microbial metabolomic arrays obtained from extracts 

of biosynthetically prolific bacteria, which enabled the 
identification of new bioactive polyketides59.

Finally, advances in analytical technologies con-
tinue to support the rigorous structure determination 
of NPs of interest. The progressive development of 
higher- field NMR instruments and probe technology60,61 
has enabled NP structure determination from very small 
quantities (below 10 µg)62,63, which is important, as the 
available quantities of NPs are often limited. In addi-
tion, microcrystal electron diffraction (MicroED) has 
recently emerged as a cryo- electron microscopy- based 
technique for unambiguous structure determination 
of small molecules64 and is already finding important 
applications in NP research65. The increased resolution 
and sensitivity of analytical equipment can also help 
address problems associated with ‘residual complex-
ity’ of isolated NPs; that is when biologically potent 
but unidentified impurities in an isolated NP sample 
(which could include structurally related metabolites or 
conformers) lead to an incorrect assignment of structure 
and/or activity66,67. To avoid futile downstream develop-
ment efforts, Pauli and colleagues recommended that 
lead NPs should undergo advanced purity analysis at an 
early stage using quantitative NMR and LC–MS67.

Genome mining and engineering
Advances in knowledge on biosynthetic pathways for NPs 
and in developing tools for analysing and manipulating 
genomes are further key drivers for modern NP- based 
drug discovery. Two key characteristics enable the iden-
tification of biosynthetic genes in the genomes of the 
producing organisms. First, these genes are clustered in 
the genomes of bacteria and filamentous fungi. Second, 
many NPs are based on polyketide or peptide cores, 
and their biosynthetic pathways involve enzymes —  
polyketide synthases (PKSs) and nonribosomal peptide 
synthetases (NRPSs), respectively — that are encoded by 
large genes with highly conserved modules68.

‘Genome mining’ is based on searches for genes 
that are likely to govern biosynthesis of scaffold struc-
tures, and can be used to identify NP biosynthetic gene 
clusters69–71. Prioritization of gene clusters for further 
work is facilitated by advances in biosynthetic know-
ledge and predictive bioinformatics tools, which can pro-
vide hints about whether the metabolic products of the  
clusters have chemical scaffolds that are new or known, 
thereby supporting dereplication72,73. Such predictive 
tools for gene cluster analysis can be applied in combi-
nation with spectroscopic techniques to accelerate the 
identification of NPs65 and determine the stereochem-
istry of metabolic products66. Furthermore, to extend 
genome mining from a single genome to entire genera, 
microbiomes or strain collections, computational tools 
have been developed, such as BiG- SCAPE, which enables 
sequence similarity analysis of biosynthetic gene clusters, 
and CORASON, which uses a phylogenomic approach 
to elucidate evolutionary relationships between gene 
clusters74.

Phylogenetic studies of known groups of talented 
secondary metabolite producers can also empower 
discovery of novel NPs. Recently, a study comparing 
secondary metabolite profiles and phylogenetic data in 

Phylogenomic approach
The use of genomic data to 
reveal evolutionary 
relationships. in the context of 
natural product drug discovery, 
the use of phylogenomics is 
based on the assumption that 
organisms that have closer 
evolutionary relationships are 
more likely to produce similar 
natural products.
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myxobacteria demonstrated a correlation between the 
taxonomic distance and the production of distinct sec-
ondary metabolite families75. In filamentous fungi, it was 
likewise shown that secondary metabolite profiles are 
closely correlated with their phylogeny76. These organ-
isms are rich in secondary metabolites, as demonstrated 
by LC–MS studies of their extracts under laboratory 
conditions77. Concurrent genomic and phylogenomic 
analyses implied that even the genomes of well- studied 
organism groups harbour many gene clusters for sec-
ondary metabolite biosynthesis with as yet unknown 
functions78. The phylogeny of biosynthetic gene clusters, 
together with analysis of the absence of known resistance 
determinants, was recently used to prioritize members of 
the glycopeptide antibiotic family that could have novel 
activities. This led to the identification of the known 
antibiotic complestatin and the newly discovered cor-
bomycin as compounds that act through a previously 
uncharacterized mechanism involving inhibition of  
peptidoglycan remodelling79.

Many microorganisms cannot be cultured, or tools 
for their genetic manipulation are not sufficiently 
developed, which makes it more challenging to access 
their NP- producing potential. However, biosynthetic 
gene clusters for NPs can be cloned and heterologously 
expressed in organisms that are well- characterized 
and easier to culture and to genetically manipulate 
(such as Streptomyces coelicolor, Escherichia coli and 
Saccharomyces cerevisiae)80. The aim is to achieve 
higher production titres in the heterologous hosts 
than in wild- type strains, improving the availability of 
lead compounds80–82. Vectors that can carry large DNA 
inserts are needed for the cloning of complete NP bio-
synthetic gene clusters. Cosmids (which can have inserts 
of 30–40 kb), fosmids (which can harbour 40–50 kb) and 
bacterial artificial chromosomes (BACs; which can have 
inserts of 100 kb to >300 kb) have been developed83. For 
fungal gene clusters, self- replicating fungal artificial 
chromosomes (FACs) have been developed, which can 
have inserts of >100 kb (reF.84). FACs in combination 
with metabolomic scoring were used to develop a scal-
able platform, FAC- MS, allowing the characterization 
of fungal biosynthetic gene clusters and their respec-
tive NPs at unprecedented scale85. The application of 
FAC- MS for the screening of 56 biosynthetic gene clus-
ters from different fungal species yielded the discovery 
of 15 new metabolites, including a new macrolactone,  
valactamide A85 (Fig. 2b).

Even in culturable microorganisms, many biosyn-
thetic gene clusters may not be expressed under con-
ventional culture conditions, and these silent clusters 
could represent a large untapped source of NPs with 
drug- like properties86. Several approaches can be pur-
sued to identify such NPs. One approach is sequencing, 
bioinformatic analysis and heterologous expression 
of silent biosynthetic gene clusters, which has already 
led to the discovery of several new NP scaffolds from 
cultivable strains87. Direct cloning and heterologous 
expression was also used to discover the new antibiotic 
taromycin A, which was identified upon the transfer 
of a silent 67 kb NRPS biosynthetic gene cluster from 
Saccharomonospora sp. CNQ-490 into S. coelicolor88.  

To transfer a biosynthetic gene cluster of such size, a plat-
form based on transformation- associated recombination 
(TAR) cloning was developed. This platform enables 
direct cloning and manipulation of large biosynthetic 
gene clusters in S. cerevisiae, maintenance and manipula-
tion of the vector in E. coli, and heterologous expression 
of the cloned gene clusters in Actinobacteria (such as  
S. coelicolor) following chromosomal integration88, and 
is an alternative to BACs for heterologous expression of 
large biosynthetic gene clusters.

Heterologous expression has limitations, such as 
the need to clone and manipulate very large genome 
regions occupied by biosynthetic gene clusters and the 
difficulty of identifying a suitable host that provides all 
conditions necessary for the production of the corre-
sponding NPs. These limitations can be circumvented 
by activating biosynthetic gene clusters directly in the 
native microorganism through targeted genetic manip-
ulations, generally involving the insertion of activating 
regulatory elements or deletion of inhibitory elements 
such as repressors or their binding sites. For example, 
a derepression strategy of deleting gbnR, a gene for a 
transcriptional repressor in Streptomyces venezuelae 
ATCC 10712 was used by Sidda et al. in the discovery of 
gaburedins, a family of γ- aminobutyrate- derived ureas89. 
An example of the activator- based strategy is the consti-
tutive expression of the samR0484 gene in Streptomyces 
ambofaciens ATCC 23877, which led to the discovery 
of stambomycins A–D, 51- membered cytotoxic glyco-
sylated macrolides72. Alternatively, silent biosynthetic 
gene clusters can be activated using repressor decoys90, 
which have the same DNA nucleotide sequence as the 
binding sites for the repressors that prevent the expres-
sion of the clusters. When these decoys are introduced 
into the bacteria, they sequester the respective repres-
sors, and the ‘endogenous’ binding sites in the genome 
remain unoccupied, leading to derepression of the pre-
viously silent biosynthetic genes and production of the 
corresponding NPs. This approach has been applied to 
activate eight silent biosynthetic gene clusters in multi-
ple streptomycetes and led to the characterization of a 
novel NP, oxazolepoxidomycin A90. The repressor decoy 
strategy is simpler, easier and faster to perform than the 
deletion of genes encoding regulatory factors. However, 
it has the same limitation as other approaches that rely 
on the introduction of recombinant DNA molecules into 
cells: it is necessary to develop protocols for efficient 
introduction of DNA into the targeted host strain, and 
the decoy must be maintained on a high- copy plasmid 
to ensure efficient repressor sequestration.

Another approach focused on exchange of regu-
latory elements is based on the CRISPR–Cas9 technol-
ogy. The promise of this technique is exemplified in a 
recent work by Zhang et al., which demonstrated that 
CRISPR–Cas9- mediated targeted promoter introduction 
can efficiently activate diverse biosynthetic gene clusters 
in multiple Streptomyces species, leading to the produc-
tion of unique metabolites, including a novel polyketide 
in Streptomyces viridochromogenes91. The CRISPR–Cas9 
technology was also used to knock out genes encoding 
two well- known and frequently rediscovered anti-
biotics in several actinomycete strains, which led to the 

Taxonomic distance
The distance of compared taxa 
on a constructed phylogenetic 
tree (also known as an 
evolutionary tree). Closer 
distance of compared taxa 
indicates a closer evolutionary 
relationship.
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production of different rare and previously unknown 
variants of antibiotics that were otherwise obscured, 
including amicetin, thiolactomycin, phenanthroviridin 
and 5- chloro-3- formylindole92.

Approaches that rely on sequencing, bioinformat-
ics and heterologous expression can also enable the 
identification of novel NPs from bacterial strains that 
have not yet been cultivated (Fig. 3a). For example, 
Hover et al. searched the metagenomes of 2,000 soil 
samples for biosynthetic gene clusters for lipopeptides 
with calcium- binding motifs. This led to the discov-
ery of malacidins, members of the calcium- dependent 
antibiotic family, via heterologous expression of a 72 kb 
biosynthetic gene cluster from a desert soil sample in a 
Streptomyces albus host strain93 (Fig. 3b). However, in 
comparison with some of the other above- discussed 
strategies72,89,90, this metagenome- based discovery 
approach is more suited to finding new members of 
known NP classes rather than discovery of entirely 
new classes. In another study, Chu et al. developed a 
human microbiome- based approach that identified 
nonribosomal linear heptapeptides called humimycins 
as novel antibiotics active against methicillin- resistant 
Staphylococcus aureus (MRSA)94 (Fig. 3c). The structure 
of the NPs was predicted via bioinformatics analysis of 
gene clusters found in human commensal bacteria, fol-
lowed by their chemical synthesis. A major strength of 
this innovative approach is that it is entirely independent 
of microbial cultivation and heterologous gene expres-
sion. Nevertheless, there are limitations related to the 
accuracy of computational chemical structure predic-
tions and the feasibility of total chemical synthesis if 
structures are complex.

The genomes of plants or animals can also be mined 
for novel NPs. For example, mining of 116 plant genomes 
enabled by identification of a precursor gene for the 
biosynthesis of lyciumins, a class of branched cyclic 
ribosomal peptides with hypotensive action produced 
by Lycium barbarum (popularly known as goji), identi-
fied diverse novel lyciumin chemotypes in seven other 
plants, including crops such as soybean, beet, quinoa and 
eggplant95. Genome mining in the animal kingdom is 
exemplified by the work of Dutertre et al., which used 
an integrated transcriptomics and proteomics approach 
to discover thousands of novel venom peptides from 
Conus marmoreus snails96. Proteomics analysis revea-
led that the vast majority of the conopeptide diversity  
was derived from a set of ~100 genes through variable 
peptide processing96.

Some bioactive compounds initially isolated from 
marine organisms might be products of symbionts, and 
genome mining can facilitate the characterization of 
such NPs. For example, it has been shown that bio active 
compounds from the sponge Theonella swinhoei are pro-
duced by bacterial symbionts97, and characterization of 
the symbiont ‘Candidatus Entotheonella serta’ using 
single- cell genomics led to the discovery of gene clus-
ters for misakinolide and theonellamide biosynthesis98. 
Another example of a marine NP produced by a bacte-
rial symbiont is ET-743 (trabectedin), originally isolated 
from the tunicate Ecteinascidia turbinate. A meta-omics 
approach developed by Rath et al. revealed that the 

producer of this clinically used anticancer agent is the 
bacterial symbiont ‘Candidatus Endoecteinascidia 
frumentensis’99.

Similarly, plant microbiomes also represent a large 
reservoir for the identification of novel bioactive NPs 
(such as the antitumour agents maytansine, paclitaxel 
and camptothecin, which were initially isolated from 
plants and later shown to be produced by microbial 
endophytes)100 that can be tapped by genome mining 
approaches. An illustrative example is a recent work 
by Helfrich et al. that identified hundreds of novel bio-
synthetic gene clusters by genome mining of 224 bac-
terial strains isolated from Arabidopsis thaliana leaves101. 
A combination of bioactivity screening and imaging mass 
spectrometry was used to select a single species for fur-
ther genomic analysis and led to the isolation of a NP with 
an unprecedented structure, the trans- acyltransferase 
PKS- derived antibiotic macrobrevin101.

Targeted genetic engineering of NP biosynthetic gene 
clusters can be of high value if the producing organism 
is difficult to cultivate or the yield of a NP is too low 
to allow comprehensive NP characterization. Rational 
genetic engineering and heterologous expression con-
tributed to increase the production of vioprolides, a 
depsi peptide class of anticancer and antifungal NPs in 
the myxobacterium Cystobacter violaceus Cb vi35, by 
several orders of magnitude. In addition, non-natural 
vio prolide analogues were generated by this approach102. 
Similarly, promoter engineering and heterologous 
expres sion of biosynthetic gene clusters was reported 
to result in a 7- fold increase in the production of the 
cytotoxic NP disorazol103, and a 328- fold increase in 
the production of spinosad, an insecticidal macrolide  
produced by the bacterium Saccharopolyspora spinosa104.

Besides increasing NP yields, targeted gene manip-
ulation can also be used to alter biosynthetic pathways  
in a predictable manner to produce new NP analogues 
with improved pharmacological properties, such as  
higher specific activity, lower toxicity and better pharma-
cokinetics. Such biosynthetic engineering approaches  
depend on a solid understanding of the biosynthetic 
pathway leading to a specific NP, access to the genes 
specifying this pathway and the ability to manipulate 
them in either the original or a hetero logous host. 
Recent advances in biosynthetic engineering have 
enabled faster and more efficient production of NP 
analogues, including the development of methods for 
accelerated engineering and recombination of modules 
of PKS gene clusters105, NRPSs106,107 and NRPS–PKS 
assembly lines108, as well as elucidation of mechanisms 
for polyketide chain release that are contributing to 
NP structural diversification109,110. Examples of bio-
synthetic engineering applied to several important NPs 
include the generation of analogues of the immuno-
suppressant rapamycin111, the antitumour agents  
mithramycin112 and bleomycin113, and the antifungal 
agent nystatin114.

It should be noted that biosynthetic engineering has 
limitations regarding the parts of the NP molecule that 
can be targeted for modifications, and the chemical 
groups that can be introduced or removed. Considering 
the complexity of many NPs, however, total synthesis 
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may be prohibitively costly, and a combined approach 
of biosynthetic engineering and chemical modification 
can provide a viable alternative for identifying improved 
drug candidates. For example, biosynthetic engineering 
may create a ‘handle’ for addition of a beneficial chem-
ical group by synthetic chemistry, as demonstrated for 
the biosynthetically engineered analogues of nystatin 
mentioned above; further synthetic chemistry modifi-
cations resulted in compounds with improved in vivo 
pharmacotherapeutic characteristics compared with 
amphotericin B115,116.

Advances in microbial culturing systems
The complex regulation of NP biosynthesis in response 
to the environment means that the conditions under 
which producing organisms are cultivated can have a 
major impact on the chance of identifying novel NPs87. 
Several strategies have been developed to improve the 
likelihood of identifying novel NPs compared with 
mono culture under standard laboratory conditions  
and to make ‘uncultured’ microorganisms grow in a  
simulated natural environment117 (Fig. 4).

One well- established approach to promote the identi-
fication of novel NPs is the modulation of culture condi-
tions such as temperature, pH and nutrient sources. This 
strategy may lead to activation of silent gene clusters, 
thereby promoting production of different NPs. The 
term ‘One Strain Many Compounds’ (OSMAC) was 
coined for this approach about 20 years ago118, but the 
concept has a longer history119, with its use being routine 
in industrial microbiology since the 1960s120.

While OSMAC is still widely used for the identifi-
cation of new bioactive compounds121,122, this approach 
has limited capacity to mimic the complexities of natu-
ral habitats. It is difficult to predict the combination of 
cues (which might also involve metabolites secreted by 
other members of the microbial community) to which 
the microorganism has evolved to respond by switching 
metabolic programmes. To account for such kinds of 
interactions, co- culturing using ‘helper’ strains can be 
applied123. This can enable the production and identifica-
tion of new NPs, as illustrated by recent studies in which 
particular fungi were co- cultured with Streptomcyes 
species124,125.

Study of the molecular mechanisms underlying 
the ability of helper strains to increase the cultivabil-
ity of previously uncultured microbes can lead to the 

identification of specific growth factors, allowing expan-
sion of the number of species that can be successfully 
cultured. This strategy was used by D’Onofrio et al. for 
the identification of new acyl- desferrioxamine sidero-
phores (iron- chelating compounds) as growth factors 
produced by helper strains promoting the growth of 
previously uncultured isolates from marine sedi-
ment biofilm117,126. The siderophore- assisted growth is 
based on the property of these compounds to provide 
iron for microbes unable to autonomously produce 
siderophores themselves, and the application of this 
approach led to the isolation of previously uncultivated 
microorganisms126. The development of strategies to 
cultivate microbial symbionts that produce NPs only 
upon interaction with their hosts can promote access 
to new NPs. Microbial symbionts interacting with 
insects or other organisms are a highly promising reser-
voir for the discovery of novel bioactive NPs produced 
in a unique ecological context127–130. To stimulate NP 
production, culturing strategies can be developed that 
better mimic the native environment of microbial sym-
bionts of insects, including the use of media containing 
either lyophilized dead insects131 or l- proline, a major 
constituent of insect haemolymph132.

Strategies to mimic the natural environment even 
more closely by harnessing in situ incubation in the 
environment from which the microorganism is sam-
pled have been developed, dating back to more than 
20 years ago with the biotech companies OneCell and 
Diversa. They developed platforms that allowed the 
growth of some previously uncultivated microbes from 
various environments based on diluting out and sus-
pension in a single drop of medium120,133. More recently, 
such strategies have been highlighted by the develop-
ment and application of a platform dubbed the iChip, 
in which diluted soil samples are seeded in multiple 
small chambers separated from the environment with 
a semipermeable membrane134. After seeding, the iChip 
is placed back into the soil from which the sample was 
taken for an in situ incubation period, allowing the cul-
tured microorganisms to be exposed to influences from 
their native environment. The power of this culturing 
approach was demonstrated by the discovery of a new 
antibiotic, teixobactin, produced by a previously uncul-
tured soil bacterium135,136 (Fig. 4a). This platform may be 
of great significance for NP drug discovery, given that 
it has been estimated that only 1% of soil organisms 
have so far been successfully cultured using traditional 
culturing techniques137.

The omics strategies discussed in previous sections 
can complement efforts to explore NPs produced upon 
microbial interactions. The application of such a strategy 
is illustrated in the work of Derewacz et al., who analysed 
the metabolome of a genome- sequenced Nocardiopsis 
bacterium upon co- culture with bacteria of the genera 
Escherichia, Bacillus, Tsukamurella and Rhodococcus138. 
Around 14% of the metabolomic features found in 
co- cultures were undetectable in monocultures, with 
many of those being unique to specific co- culture gen-
era, and the previously unreported polyketides ciro-
micin A and B, which possess an unusual pyrrolidinol 
substructure and displayed moderate and selective 

Fig. 3 | strategies for genome mining-driven discovery of natural products and 
natural product-like compounds. a | Genome mining- based approaches to explore  
the biosynthetic capacity of microorganisms rely on DNA extraction, sequencing and 
bioinformatics analysis. The vast majority of microbes from different environments  
and microbiota communities have not been cultured, and their capacity to produce 
natural products (NPs) was largely inaccessible until recently. In the case of unculturable 
microorganisms, the bioinformatics analysis step can be followed by either targeted 
heterologous expression of biosynthetic gene clusters (BGCs) prioritized as being likely 
to yield relevant new NPs or direct chemical synthesis of ‘synthetic–bioinformatic’  
NP- like compounds. b,c | These two approaches are exemplified by the recent discoveries 
of malacidins (panel b) and humimycins (panel c), respectively93,94. A major strength of the 
‘synthetic–bioinformatic’ approach is that it is entirely independent of microbial culture 
and gene expression. Its limitations are the accuracy of computational chemical structure 
predictions and the feasibility of total chemical synthesis. NRPS, nonribosomal peptide 
synthetase.
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cytotoxicity, were identified138. Other examples include 
a ‘culturomics’ approach that combines multiple culture 
conditions with MS profiling and 16S rRNA- based tax-
onomy to identify prokaryotic species from the human 
gut139, and an ultrahigh- throughput screening platform 
based on microfluidic droplet single- cell encapsulation 
and cultivation followed by next- generation sequenc-
ing and LC–MS, which allows investigation of pairwise 
interactions between target microorganisms140. The lat-
ter approach enabled identification of a slow- growing 
oral microbiota species that inhibits the growth of  
S. aureus140.

Historically early- adopted microbial culturing 
approaches led to a bias reflected in the predominant 
discovery of NPs from microorganisms that are easy to 
cultivate (such as streptomycetes and some common fil-
amentous fungi). As a result, a vast number of NPs from 

such ‘easy to culture’ microbes have already been charac-
terized, and conventional screening efforts tend to yield 
disappointing returns associated with frequent rediscov-
ery of known NPs and their closely related congeners. 
Therefore, culturing strategies aimed at previously unex-
plored (or under- investigated) microbial groups, with 
the potential to produce NPs with entirely new scaffolds 
and bioactivities (such as Burkholderia, Clostridium and 
Xenorhabdus) are of high interest141,142. Closthioamide, 
the first secondary metabolite from a strictly anaerobic 
bacterium, was discovered from Clostridium cellulo-
lyticum by this approach143. Targeted isolation of such 
species is important, and a genome- guided approach 
to achieve this goal has recently been demonstrated 
for Burkholderia strains in environmental samples144. 
Another highly innovative approach to the isolation 
and cultivation of previously uncultured bacteria was 
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recently reported by Cross et al.145, who used genomic 
information to engineer antibodies predicted to target 
selected microorganisms and to specifically capture 
these microorganisms from complex communities 
and to isolate them in pure cultures. This approach 
was validated by isolation and cultivation of previ-
ously uncultured bacteria from the human oral cavity145 
(Fig. 4b), and it could be applicable to a wide range of 
target organisms if suitable cultivation conditions can 
be identified for the isolated cells.

Despite these advances in culturing strategies, 
artificial conditions still do not fully represent the 
complex environment of natural habitats. To circum-
vent this problem, microbial and NP diversity can 
also be accessed via extraction of organisms and/or  
their NPs in situ. To directly gain compounds pro-
duced in the natural marine environment (which may 
be missed otherwise), resin capture technology can be  
used to capture compounds on inert sorbent supports 
ready to be desorbed, analysed and tested for bio-
logical activity146. Sustainable approaches for in situ 
extraction with green solvents, such as glycerol or nat-
ural deep eutectic and ionic solvents (NADES), could 
be used directly during field work147,148. To improve 
dereplication, analytical equipment miniaturization 
is also facilitating in situ analysis; examples include 
the introduction of devices for physicochemical data 
analysis, such as micro- MS and portable near infrared  
spectroscopy149,150.

Outlook for NPs in drug discovery
The technological advances discussed above have the 
potential to reinvigorate NP- based drug discovery in 
both established and emerging areas. NPs have long 
been the key source of new drugs against infectious dis-
eases, especially antibiotics (reviewed elsewhere151,152). 
Selected NPs with antimicrobial properties discovered 
by leveraging advances discussed in the sections above, 
including strategies to exploit the human microbiome 
for novel NPs94,153 are highlighted in Figs 3,4. Along 
with the search for new NPs with antimicrobial activi-
ties, researchers are continuing to develop and optimize 
already known NP classes, making use of advances 
in biosynthetic engineering154, total synthesis155 or 
semi- synthetic strategies156,157. In addition, antivirulence 
strategies could represent an alternative approach to 
fighting infections158, for which NPs targeting bacterial 
quorum sensing could be of interest159.

NPs also have a successful history as cancer therapeu-
tics, which has been well covered in other reviews160–163. 
An important new opportunity in this field is the capac-
ity of some NPs to trigger a selective yet potent host 
immune reaction against cancer cells, particularly given 
the intense interest at present in strategies that could 
improve response rates to immune checkpoint inhibi-
tors by turning ‘cold’ tumours ‘hot’164. For example, NPs 
such as cardiac glycosides165 can increase the immuno-
genicity of stressed and dying cancer cells by triggering 
immunogenic cell death, characterized by the release 
of damage- associated molecular patterns (DAMPs), 
which could open new avenues for drug discovery or 
repurposing166–168.

Botanical therapies containing complex mixtures of 
NPs have long attracted interest owing to the potential 
for synergistic therapeutic effects of components within 
the mixture169,170. However, the variability of the NP 
composition in the starting plant material owing to fac-
tors such as environmental variations in the location at 
which the plants were collected is a major challenge for 
the development of botanical drugs1. With the advances 
in technology for their characterization, such as metab-
olomics discussed above, as well as development of 
regulatory guidance for complex mixtures of NPs (see 
Related links), it is becoming more feasible to develop 
such mixtures as therapeutics, rather than to identify 
and purify a single active ingredient171.

Since gut microbiota are considered to play a major 
role in health and disease172–174, and NPs are known to 
affect the gut microbiome composition175–178, this area is 
an emerging opportunity for NP- based drug discovery. 
However, drug discovery efforts in this area are still in 
their infancy, with many open questions remaining179. 
A future direction may be the characterization of single 
microbiota- derived species for particular therapeutic 
applications, and the advances in culturing strategies, 
genome mining and analytics discussed above will be of 
great importance in this respect.

Many advances discussed above are supported 
by computational tools including databases (such as 
genomic, chemical or spectral analysis data; see reF.180 
for a recent review on NP databases) and tools that ena-
ble the analysis of genetic information, the prediction 
of chemical structures and pharmacological activities181, 
the integration of data sets with diverse information 
(such as tools for multi- omics analysis)182 and machine 
learning applications183.

Although this Review focuses on technologies that 
enable the discovery of novel NPs, it is important to 
acknowledge that unmodified NPs may possess sub-
optimal efficacy or absorption, distribution, metab-
olism, excretion and toxicity (ADMET) properties.  
So, for development of NP hits into leads and ultimately 
into successful drugs, chemical modification may be 
required. In addition, bringing a compound into clini-
cal development requires a sustainable and economically 
viable supply of sufficient quantities of the compound. 
Total chemical synthesis, semi- synthesis using a NP as a 
starting point for analogue generation and biosynthetic 
engineering modifying biosynthetic pathways of the 
producing organism will be of great importance in this 
context (Fig. 5). Recent advances in chemical synthesis 
and biosynthetic engineering technologies are strongly 
empowering NP- based drug discovery and develop-
ment by enabling property optimization of complex NP 
scaffolds that were previously regarded as inaccessible. 
This allows the enrichment of screening libraries with 
NPs, NP hybrids, NP analogues and NP- inspired mole-
cules, as well as superior structure functionalization 
approaches (including late- stage functionalization) for 
optimization of NP leads94,105–108,184–188.

Finally, although NP- based drug discovery offers a 
unique niche for diverse forms of academia–industry 
collaboration, a key challenge is that scientific and 
technological expertise is often scattered over many 
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academic institutions and companies. Focused efforts 
are needed to support translational NP research in aca-
demia, which has become more difficult in recent years 
given the decline in the number of large companies 
actively engaged in NP research. A conventional solution 
to improve academia–industry interaction is to focus 
the relevant expertise under one umbrella and in close 

spatial proximity. For example, the Phytovalley Tirol, 
centred in Innsbruck, Austria, brings together several 
research institutions and companies (among others, the 
Austrian Drug Screening Institute (ADSI), the Michael 
Popp Resea rch Institute for New Phyto- Entities, Biono-
rica Research and Biocrates Life Sciences AG) with the  
aim of accelerating NP- based drug discovery. Another 
solution could be virtual consortia, such as the Inter-
natio nal Natural Product Sciences Taskforce (INPST) 
that we have recently established (see Related links), 
which provides a platform for integration of exper-
tise, technology and materials from the participating  
academic and industrial entities.

In conclusion, NPs remain a promising pool for the 
discovery of scaffolds with high structural diversity 
and various bioactivities that can be directly developed 
or used as starting points for optimization into novel 
drugs. While drug development overall continues to be 
challenged by high attrition rates, there are additional 
hurdles for NPs due to issues such as accessibility, sus-
tainable supply and IP constraints. However, we believe 
that the scientific and technological advances discussed 
in this Review provide a strong basis for NP- based drug 
discovery to continue making major contributions to 
human health and longevity.

Published online xx xx xxxx

Fig. 5 | strategies to obtain natural product analogues with superior properties. 
Unmodified natural products (NPs) often possess suboptimal properties, and superior 
analogues need to be obtained in order to yield valuable new drugs. a | NP analogues  
can be accessed through the development of total chemical synthesis followed by 
chemical derivatization, through semisynthesis using a NP as a starting point for the 
introduction of chemical modifications, and through biosynthetic engineering using 
manipulations of biosynthetic pathways of the producing organism to generate NP 
analogues. b,c | Tetracyclines are an example of NP- derived antibiotics that have already 
yielded several generations of successfully marketed semisynthetic and synthetic 
derivatives. The first generation of tetracyclines (such as chlortetracycline and tetracycline) 
were unmodified NPs, while the two subsequent generations of analogues with optimized 
properties were semisynthetic (second- generation, doxycycline, minocycline; third- 
generation, tigecycline) and the most recently developed fourth- generation analogues 
(eravacycline) are entirely synthetic, accessed via total synthesis193,194. More recent 
examples of property optimization of other classes of NPs through total chemical synthesis 
followed by chemical derivatization or through semisynthesis are illustrated by studies 
focused on analogues of chrysomycin A (panel b)195 and arylomycins (panel c)157, respectively. 
d | The biosynthetic engineering approach has also shown potential; for example, in  
the generation of analogues of rapamycin111, bleomycin113 (panel d) and nystatin114.  
6′- deoxy- BLM A2, 6′- deoxy- bleomycin A2; BLM A2, bleomycin A2.
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