Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2008
Metadata
Show full item recordAbstract
In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with natural pathways. Alternatively, they may be interlinked with endogenous pathways to create artificial networks of higher complexity. While these approaches have been already successful in prokaryotes and lower eukaryotes, the implementation of such synthetic cassettes in mammalian systems and even animals is still a major obstacle. This is mainly due to the lack of methods that reliably and efficiently transduce synthetic modules without compromising their regulation properties. To pave the way for implementation of synthetic regulation modules in mammalian systems we utilized lentiviral transduction of synthetic modules. A synthetic positive feedback loop, based on the Tetracycline regulation system was implemented in a lentiviral vector system and stably integrated in mammalian cells. This gene regulation circuit yields a bimodal expression response. Based on experimental data a mathematical model based on stochasticity was developed which matched and described the experimental findings. Modelling predicted a hysteretic expression response which was verified experimentally. Thereby supporting the idea that the system is driven by stochasticity. The results presented here highlight that the combination of three independent tools/methodologies facilitate the reliable installation of synthetic gene circuits with predictable expression characteristics in mammalian cells and organisms.Citation
Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit. 2008, 3 (6):e2372 PLoS ONEAffiliation
Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany.Journal
PloS onePubMed ID
18523635Type
ArticleLanguage
enISSN
1932-6203ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0002372
Scopus Count
The following license files are associated with this item:
Related articles
- Hysteretic Genetic Circuit for Detection of Proteasomal Degradation in Mammalian Cells.
- Authors: Zeng Y, Bhagyashree B, Zhao W, Nguyen T, Segatori L
- Issue date: 2019 Sep 20
- Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction.
- Authors: Mitta B, Rimann M, Ehrengruber MU, Ehrbar M, Djonov V, Kelm J, Fussenegger M
- Issue date: 2002 Nov 1
- Synthetic gene regulation circuits for control of cell expansion.
- Authors: May T, Butueva M, Bantner S, Markusic D, Seppen J, MacLeod RA, Weich H, Hauser H, Wirth D
- Issue date: 2010 Feb
- Semi-synthetic mammalian gene regulatory networks.
- Authors: Kramer BP, Fischer M, Fussenegger M
- Issue date: 2005 Jul
- Controlling cell-to-cell variability with synthetic gene circuits.
- Authors: Azizoglu A, Stelling J
- Issue date: 2019 Dec 20