Recent Submissions

  • Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells.

    Delacher, Michael; Simon, Malte; Sanderink, Lieke; Hotz-Wagenblatt, Agnes; Wuttke, Marina; Schambeck, Kathrin; Schmidleithner, Lisa; Bittner, Sebastian; Pant, Asmita; Ritter, Uwe; et al. (Cell Press, 2021-03-30)
    Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.
  • Influenza A virus-induced thymus atrophy differentially affects dynamics of conventional and regulatory T-cell development in mice.

    Elfaki, Yassin; Robert, Philippe A; Binz, Christoph; Falk, Christine S; Bruder, Dunja; Prinz, Immo; Floess, Stefan; Meyer-Hermann, Michael; Huehn, Jochen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Wiley-VCH, 2021-02-26)
    Foxp3+ Treg cells, which are crucial for maintenance of self-tolerance, mainly develop within the thymus, where they arise from CD25+ Foxp3- or CD25- Foxp3+ Treg cell precursors. Although it is known that infections can cause transient thymic involution, the impact of infection-induced thymus atrophy on thymic Treg (tTreg) cell development is unknown. Here, we infected mice with influenza A virus (IAV) and studied thymocyte population dynamics post infection. IAV infection caused a massive, but transient thymic involution, dominated by a loss of CD4+ CD8+ double-positive (DP) thymocytes, which was accompanied by a significant increase in the frequency of CD25+ Foxp3+ tTreg cells. Differential apoptosis susceptibility could be experimentally excluded as a reason for the relative tTreg cell increase, and mathematical modeling suggested that enhanced tTreg cell generation cannot explain the increased frequency of tTreg cells. Yet, an increased death of DP thymocytes and augmented exit of single-positive (SP) thymocytes was suggested to be causative. Interestingly, IAV-induced thymus atrophy resulted in a significantly reduced T-cell receptor (TCR) repertoire diversity of newly produced tTreg cells. Taken together, IAV-induced thymus atrophy is substantially altering the dynamics of major thymocyte populations, finally resulting in a relative increase of tTreg cells with an altered TCR repertoire.
  • Lymph node stromal cell subsets-Emerging specialists for tailored tissue-specific immune responses.

    Zou, Mangge; Wiechers, Carolin; Huehn, Jochen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-02-25)
    The effective priming of adaptive immune responses depends on the precise dispatching of lymphocytes and antigens into and within lymph nodes (LNs), which are strategically dispersed throughout the body. Over the past decade, a growing body of evidence has advanced our understanding of lymph node stromal cells (LNSCs) from viewing them as mere accessory cells to seeing them as critical cellular players for the modulation of adaptive immune responses. In this review, we summarize current advances on the pivotal roles that LNSCs play in orchestrating adaptive immune responses during homeostasis and infection, and highlight the imprinting of location-specific information by micro-environmental cues into LNSCs, thereby tailoring tissue-specific immune responses.
  • Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool.

    Permanyer, Marc; Bošnjak, Berislav; Glage, Silke; Friedrichsen, Michaela; Floess, Stefan; Huehn, Jochen; Patzer, Gwendolyn E; Odak, Ivan; Eckert, Nadine; Zargari, Razieh; et al. (Springer Nature, 2021-01-06)
    Signaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.
  • Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery.

    Riebisch, Anna K; Mühlen, Sabrina; Beer, Yan Yan; Schmitz, Ingo; HZI, Helmholtz Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (MDPI, 2021-01-22)
    Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
  • The Cytomegalovirus Tegument Protein UL35 Antagonizes Pattern Recognition Receptor-Mediated Type I IFN Transcription.

    Fabits, Markus; Gonçalves Magalhães, Vladimir; Chan, Baca; Girault, Virginie; Elbasani, Endrit; Rossetti, Elisa; Saeland, Eirikur; Messerle, Martin; Pichlmair, Andreas; Lisnić, Vanda Juranić; et al. (MDPI, 2020-05-26)
    The rapid activation of pattern recognition receptor (PRR)-mediated type I interferon (IFN) signaling is crucial for the host response to infection. In turn, human cytomegalovirus (HCMV) must evade this potent response to establish life-long infection. Here, we reveal that the HCMV tegument protein UL35 antagonizes the activation of type I IFN transcription downstream of the DNA and RNA sensors cGAS and RIG-I, respectively. We show that ectopic expression of UL35 diminishes the type I IFN response, while infection with a recombinant HCMV lacking UL35 induces an elevated type I IFN response compared to wildtype HCMV. With a series of luciferase reporter assays and the analysis of signaling kinetics upon HCMV infection, we observed that UL35 downmodulates PRR signaling at the level of the key signaling factor TANK-binding kinase 1 (TBK1). Finally, we demonstrate that UL35 and TBK1 co-immunoprecipitate when co-expressed in HEK293T cells. In addition, we show that a previously reported cellular binding partner of UL35, O-GlcNAc transferase (OGT), post-translationally GlcNAcylates UL35, but that this modification is not required for the antagonizing effect of UL35 on PRR signaling. In summary, we have identified UL35 as the first HCMV protein to antagonize the type I IFN response at the level of TBK1, thereby enriching our understanding of how this important herpesvirus escapes host immune responses.
  • YB-1 Mediates TNF-Induced Pro-Survival Signaling by Regulating NF-κB Activation.

    Shah, Aneri; Plaza-Sirvent, Carlos; Weinert, Sönke; Buchbinder, Jörn H; Lavrik, Inna N; Mertens, Peter R; Schmitz, Ingo; Lindquist, Jonathan A; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-08-05)
    Cell fate decisions regulating survival and death are essential for maintaining tissue homeostasis; dysregulation thereof can lead to tumor development. In some cases, survival and death are triggered by the same receptor, e.g., tumor necrosis factor (TNF)-receptor 1 (TNFR1). We identified a prominent role for the cold shock Y-box binding protein-1 (YB-1) in the TNF-induced activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65. In the absence of YB-1, the expression of TNF receptor-associated factor 2 (TRAF2), a central component of the TNF receptor signaling complex required for NF-κB activation, is significantly reduced. Therefore, we hypothesized that the loss of YB-1 results in a destabilization of TRAF2. Consistent with this hypothesis, we observed that YB-1-deficient cells were more prone to TNF-induced apoptotic cell death. We observed enhanced effector caspase-3 activation and could successfully rescue the cells using the pan-caspase inhibitor zVAD-fmk, but not necrostatin-1. Taken together, our results indicate that YB-1 plays a central role in promoting cell survival through NF-κB activation and identifies a novel mechanism by which enhanced YB-1 expression may contribute to tumor development.
  • Acute neonatal Listeria monocytogenes infection causes long-term, organ-specific changes in immune cell subset composition.

    Zou, Mangge; Yang, Juhao; Wiechers, Carolin; Huehn, Jochen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Akadémiai Kiadó, 2020-06-19)
    Listeria monocytogenes (Lm) is a food-borne pathogen with a high chance of infecting neonates, pregnant women, elderly and immunocompromised individuals. Lm infection in neonates can cause neonatal meningitis and sepsis with a high risk of severe neurological and developmental sequelae and high mortality rates. However, whether an acute neonatal Lm infection causes long-term effects on the immune system persisting until adulthood has not been fully elucidated. Here, we established a neonatal Lm infection model and monitored the composition of major immune cell subsets at defined time points post infection (p.i.) in secondary lymphoid organs and the intestine. Twelve weeks p.i., the CD8+ T cell population was decreased in colon and mesenteric lymph nodes (mLNs) with an opposing increase in the spleen. In the colon, we observed an accumulation of CD4+ and CD8+ effector/memory T cells with an increase of T-bet+ T helper 1 (Th1) cells. In addition, 12 weeks p.i. an altered composition of innate lymphoid cell (ILC) and dendritic cell (DC) subsets was still observed in colon and mLNs, respectively. Together, these findings highlight organ-specific long-term consequences of an acute neonatal Lm infection on both the adaptive and innate immune system.
  • Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses.

    Bonifacius, Agnes; Goldmann, Oliver; Floess, Stefan; Holtfreter, Silva; Robert, Philippe A; Nordengrün, Maria; Kruse, Friederike; Lochner, Matthias; Falk, Christine S; Schmitz, Ingo; et al. (Frontiers, 2020-08-07)
    Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.
  • Salt generates anti-inflammatory Th17 cells but amplifies their pathogenicity in pro-inflammatory cytokine microenvironments.

    Matthias, Julia; Heink, Sylvia; Picard, Felix Sr; Zeiträg, Julia; Kolz, Anna; Chao, Ying-Yin; Soll, Dominik; de Almeida, Gustavo P; Glasmacher, Elke; Jacobsen, Ilse D; et al. (American Society for Clinical Investigation, 2020-06-02)
    T helper cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here we demonstrate that high NaCl conditions induced a stable, pathogen-specific, anti-inflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and interleukin (IL)-17A-expression in high-NaCl conditions. The NaCl-induced acquisition of an anti-inflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a pro-inflammatory and TGF-β-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.
  • Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells.

    Kyburz, Andreas; Fallegger, Angela; Zhang, Xiaozhou; Altobelli, Aleksandra; Artola-Boran, Mariela; Borbet, Timothy; Urban, Sabine; Paul, Petra; Münz, Christian; Floess, Stefan; et al. (Elsevier, 2018-09-19)
    Background: Transmaternal exposure to tobacco, microbes, nutrients, and other environmental factors shapes the fetal immune system through epigenetic processes. The gastric microbe Helicobacter pylori represents an ancestral constituent of the human microbiota that causes gastric disorders on the one hand and is inversely associated with allergies and chronic inflammatory conditions on the other. Objective: Here we investigate the consequences of transmaternal exposure to H pylori in utero and/or during lactation for susceptibility to viral and bacterial infection, predisposition to allergic airway inflammation, and development of immune cell populations in the lungs and lymphoid organs. Methods: We use experimental models of house dust mite- or ovalbumin-induced airway inflammation and influenza A virus or Citrobacter rodentium infection along with metagenomics analyses, multicolor flow cytometry, and bisulfite pyrosequencing, to study the effects of H pylori on allergy severity and immunologic and microbiome correlates thereof. Results: Perinatal exposure to H pylori extract or its immunomodulator vacuolating cytotoxin confers robust protective effects against allergic airway inflammation not only in first- but also second-generation offspring but does not increase susceptibility to viral or bacterial infection. Immune correlates of allergy protection include skewing of regulatory over effector T cells, expansion of regulatory T-cell subsets expressing CXCR3 or retinoic acid-related orphan receptor γt, and demethylation of the forkhead box P3 (FOXP3) locus. The composition and diversity of the gastrointestinal microbiota is measurably affected by perinatal H pylori exposure. Conclusion: We conclude that exposure to H pylori has consequences not only for the carrier but also for subsequent generations that can be exploited for interventional purposes. Keywords: Allergic airway inflammation; epigenetic regulation of allergy and asthma; immune regulation; immune tolerance; metagenomics; microbial interventions during pregnancy.
  • Expansion of functional personalized cells with specific transgene combinations.

    Lipps, Christoph; Klein, Franziska; Wahlicht, Tom; Seiffert, Virginia; Butueva, Milada; Zauers, Jeannette; Truschel, Theresa; Luckner, Martin; Köster, Mario; MacLeod, Roderick; et al. (Springer Nature, 2018-03-08)
    Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.
  • Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation.

    Kouakanou, Léonce; Peters, Christian; Sun, Qiwei; Floess, Stefan; Bhat, Jaydeep; Huehn, Jochen; Kabelitz, Dieter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature Publishing Group, 2020-04-16)
    Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene
  • c-FLIP is crucial for IL-7/IL-15-dependent NKp46 ILC development and protection from intestinal inflammation in mice.

    Bank, Ute; Deiser, Katrin; Plaza-Sirvent, Carlos; Osbelt, Lisa; Witte, Amelie; Knop, Laura; Labrenz, Rebecca; Jänsch, Robert; Richter, Felix; Biswas, Aindrila; et al. (Nature research, 2020-02-26)
    NKp46+ innate lymphoid cells (ILC) modulate tissue homeostasis and anti-microbial immune responses. ILC development and function are regulated by cytokines such as Interleukin (IL)-7 and IL-15. However, the ILC-intrinsic pathways translating cytokine signals into developmental programs are largely unknown. Here we show that the anti-apoptotic molecule cellular FLICE-like inhibitory protein (c-FLIP) is crucial for the generation of IL-7/IL-15-dependent NKp46+ ILC1, including conventional natural killer (cNK) cells, and ILC3. Cytokine-induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) precedes up-regulation of c-FLIP, which protects developing NKp46+ ILC from TNF-induced apoptosis. NKp46+ ILC-specific inactivation of c-FLIP leads to the loss of all IL-7/IL-15-dependent NKp46+ ILC, thereby inducing early-onset chronic colitis and subsequently microbial dysbiosis; meanwhile, the depletion of cNK, but not NKp46+ ILC1/3, aggravates experimental colitis. In summary, our data demonstrate a non-redundant function of c-FLIP for the generation of NKp46+ ILC, which protect T/B lymphocyte-sufficient mice from intestinal inflammation.
  • The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 Regulatory T Cells.

    Andersen, Liisa; Gülich, Alexandra Franziska; Alteneder, Marlis; Preglej, Teresa; Orola, Maria Jonah; Dhele, Narendra; Stolz, Valentina; Schebesta, Alexandra; Hamminger, Patricia; Hladik, Anastasiya; et al. (Elsevier/Cell Press, 2019-12-24)
    Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
  • Recirculating IL-1R2 Tregs fine-tune intrathymic Treg development under inflammatory conditions.

    Nikolouli, Eirini; Elfaki, Yassin; Herppich, Susanne; Schelmbauer, Carsten; Delacher, Michael; Falk, Christine; Mufazalov, Ilgiz A; Waisman, Ari; Feuerer, Markus; Huehn, Jochen; et al. (Springer Nature, 2020-01-27)
    The vast majority of Foxp3+ regulatory T cells (Tregs) are generated in the thymus, and several factors, such as cytokines and unique thymic antigen-presenting cells, are known to contribute to the development of these thymus-derived Tregs (tTregs). Here, we report the existence of a specific subset of Foxp3+ Tregs within the thymus that is characterized by the expression of IL-1R2, which is a decoy receptor for the inflammatory cytokine IL-1. Detailed flow cytometric analysis of the thymocytes from Foxp3hCD2xRAG1GFP reporter mice revealed that the IL-1R2+ Tregs are mainly RAG1GFP- and CCR6+CCR7-, demonstrating that these Tregs are recirculating cells entering the thymus from the periphery and that they have an activated phenotype. In the spleen, the majority of IL-1R2+ Tregs express neuropilin-1 (Nrp-1) and Helios, suggesting a thymic origin for these Tregs. Interestingly, among all tissues studied, the highest frequency of IL-1R2+ Tregs was observed in the thymus, indicating preferential recruitment of this Treg subset by the thymus. Using fetal thymic organ cultures (FTOCs), we demonstrated that increased concentrations of exogenous IL-1β blocked intrathymic Treg development, resulting in a decreased frequency of CD25+Foxp3+ tTregs and an accumulation of CD25+Foxp3- Treg precursors. Interestingly, the addition of IL-1R2+ Tregs, but not IL-1R2- Tregs, to reaggregated thymic organ cultures (RTOCs) abrogated the IL-1β-mediated blockade, demonstrating that these recirculating IL-1R2+ Tregs can quench IL-1 signaling in the thymus and thereby maintain thymic Treg development even under inflammatory conditions.
  • Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining

    Bui, Viet D.; Mwangi, James W.; Meinshausen, Ann-Kathrin; Mueller, Andreas J.; Bertrand, Jessica; Schubert, Andreas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier BV, 2020-02)
    Previous studies have revealed the potential of powder mixed electrical discharge machining (PMEDM) with regards to concurrently machining part geometry and coating an antibacterial layer on medical devices. This study is aimed at further demonstrating this potential. In order to do so, the PMEDM process was varied by adding different concentrations of silver nano-particles into the dielectric fluid and used to machine Ti-6Al-4V. Afterwards, the resulting machined and coated surfaces were characterized with regards to surface integrity, the coating layer's thickness, microhardness and chemical elements as well as antibacterial property. Material removal rate, tool wear and pulse signals were also analysed in order to give an insight on process feasibility. From both qualitative and quantitative results, it could be established that the surfaces machined and coated by PMEDM method have demonstrated a significant reduction of not only the amount of S. aureus bacteria, but also the number of bacterial clusters on the coating layer's surface. Moreover, the coating layer's silver content, which depends on the powder concentration suspended in the dielectric fluid, plays a vital role in the antibacterial property. As compared to surfaces without silver, surfaces containing approximately 3.78% silver content showed a significant decrease in both bacterial numbers and clusters, whereas a further increase in silver content did not result in a considerable bacterial number and cluster reduction. Regarding the machining performance, as compared to EDM without powder, machining time is remarkably decreased by using the PMEDM method.
  • Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development.

    Maluski, Marcel; Ghosh, Arnab; Herbst, Jessica; Scholl, Vanessa; Baumann, Rolf; Huehn, Jochen; Geffers, Robert; Meyer, Johann; Maul, Holger; Eiz-Vesper, Britta; et al. (American Society for Clinical Investigation, 2019-12-02)
    The transcription factor B cell CLL/lymphoma 11B (BCL11B) is indispensable for T lineage development of lymphoid progenitors. Here, we show that chimeric antigen receptor (CAR) expression during early phases of ex vivo generation of lymphoid progenitors suppressed BCL11B, leading to suppression of T cell-associated gene expression and acquisition of NK cell-like properties. Upon adoptive transfer into hematopoietic stem cell transplant recipients, CAR-expressing lymphoid progenitors differentiated into CAR-induced killer (CARiK) cells that mediated potent antigen-directed antileukemic activity even across MHC barriers. CD28 and active immunoreceptor tyrosine-based activation motifs were critical for a functional CARiK phenotype. These results give important insights into differentiation of murine and human lymphoid progenitors driven by synthetic CAR transgene expression and encourage further evaluation of ex vivo-generated CARiK cells for targeted immunotherapy.
  • The NF-κB transcription factor c-Rel controls host defense against Citrobacter rodentium.

    Luu, Maik; Romero, Rossana; Bazant, Jasmin; Abass, Elfadil; Hartmann, Sabrina; Leister, Hanna; Fischer, Florence; Mahdavi, Rouzbeh; Plaza-Sirvent, Carlos; Schmitz, Ingo; et al. (Wiley-VCH, 2019-11-14)
    Mice lacking CD4+ T cells or B cells are highly susceptible to Citrobacter rodentium infection. In this study, we show that the activity of the transcription factor c-Rel in lymphocytes is crucial for clearance of C. rodentium. Mice deficient for c-Rel fail to generate protective antibodies and to eradicate the pathogen.
  • A Hypermorphic Allele Contributes to Impaired Thymic Deletion of Autoreactive Diabetogenic CD8 T Cells in NOD Mice.

    Presa, Maximiliano; Racine, Jeremy J; Dwyer, Jennifer R; Lamont, Deanna J; Ratiu, Jeremy J; Sarsani, Vishal Kumar; Chen, Yi-Guang; Geurts, Aron; Schmitz, Ingo; Stearns, Timothy; et al. (American Association of Immunologists, 2018-10-01)
    In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic β cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.

View more