• Activated protein C protects from GvHD via PAR2/PAR3 signalling in regulatory T-cells.

      Ranjan, Satish; Goihl, Alexander; Kohli, Shrey; Gadi, Ihsan; Pierau, Mandy; Shahzad, Khurrum; Gupta, Dheerendra; Bock, Fabian; Wang, Hongjie; Shaikh, Haroon; et al. (2017-08-21)
      Graft-vs.-host disease (GvHD) is a major complication of allogenic hematopoietic stem-cell(HSC) transplantation. GvHD is associated with loss of endothelial thrombomodulin, but the relevance of this for the adaptive immune response to transplanted HSCs remains unknown. Here we show that the protease-activated protein C (aPC), which is generated by thrombomodulin, ameliorates GvHD aPC restricts allogenic T-cell activation via the protease activated receptor (PAR)2/PAR3 heterodimer on regulatory T-cells (Tregs, CD4(+)FOXP3(+)). Preincubation of pan T-cells with aPC prior to transplantation increases the frequency of Tregs and protects from GvHD. Preincubation of human T-cells (HLA-DR4(-)CD4(+)) with aPC prior to transplantation into humanized (NSG-AB°DR4) mice ameliorates graft-vs.-host disease. The protective effect of aPC on GvHD does not compromise the graft vs. leukaemia effect in two independent tumor cell models. Ex vivo preincubation of T-cells with aPC, aPC-based therapies, or targeting PAR2/PAR3 on T-cells may provide a safe and effective approach to mitigate GvHD.Graft-vs.-host disease is a complication of allogenic hematopoietic stem cell transplantation, and is associated with endothelial dysfunction. Here the authors show that activated protein C signals via PAR2/PAR3 to expand Treg cells, mitigating the disease in mice.
    • Age-dependent enterocyte invasion and microcolony formation by Salmonella.

      Zhang, Kaiyi; Dupont, Aline; Torow, Natalia; Gohde, Fredrik; Leschner, Sara; Lienenklaus, Stefan; Weiss, Siegfried; Brinkmann, Melanie M; Kühnel, Mark; Hensel, Michael; et al. (2014-09)
      The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo.
    • Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance.

      Nikolouli, Eirini; Hardtke-Wolenski, Matthias; Hapke, Martin; Beckstette, Michael; Geffers, Robert; Floess, Stefan; Jaeckel, Elmar; Huehn, Jochen; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
      Regulatory T cells (Tregs) are critical for the maintenance of immune homeostasis and self-tolerance and can be therapeutically used for prevention of unwanted immune responses such as allotransplant rejection. Tregs are characterized by expression of the transcription factor Foxp3, and recent work suggests that epigenetic imprinting of Foxp3 and other Treg-specific epigenetic signatures genes is crucial for the stabilization of both Foxp3 expression and immunosuppressive properties within Tregs. Lately, vitamin C was reported to enhance the activity of enzymes of the ten-eleven translocation family, thereby fostering the demethylation of Foxp3 and other Treg-specific epigenetic signatures genes in developing Tregs. Here, we in vitro generated alloantigen-induced Foxp3(+) Tregs (allo-iTregs) in presence of vitamin C. Although vitamin C hardly influenced the transcriptome of allo-iTregs as revealed by RNA-seq, those vitamin C-treated allo-iTregs showed a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signatures genes accompanied with an enhanced stability of Foxp3 expression. Accordingly, when being tested in vivo in an allogeneic skin transplantation model, vitamin C-treated allo-iTregs showed a superior suppressive capacity. Together, our results pave the way for the establishment of novel protocols for the in vitro generation of alloantigen-induced Foxp3(+) Tregs for therapeutic use in transplantation medicine.
    • Atypical IκB proteins - nuclear modulators of NF-κB signaling.

      Schuster, Marc; Annemann, Michaela; Plaza-Sirvent, Carlos; Schmitz, Ingo; Systems-oriented Immunology and Inflammation Research, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany. ingo.schmitz@helmholtz-hzi.de. (2013)
      Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
    • Atypical IκB proteins in immune cell differentiation and function.

      Annemann, Michaela; Plaza-Sirvent, Carlos; Schuster, Marc; Katsoulis-Dimitriou, Konstantinos; Kliche, Stefanie; Schraven, Burkhart; Schmitz, Ingo (2016-03)
      The NF-κB/Rel signalling pathway plays a crucial role in numerous biological processes, including innate and adaptive immunity. NF-κB is a family of transcription factors, whose activity is regulated by the inhibitors of NF-κB (IκB). The IκB proteins comprise two distinct groups, the classical (cytoplasmic) and the atypical (nuclear) IκB proteins. Although the cytoplasmic regulation of NF-κB is well characterised, its nuclear regulation mechanisms remain marginally elucidated. However, work from recent years indicated that nuclear IκBs contribute significantly to the modulation of NF-κB-mediated transcription in the immune system. Here, we discuss the role of the atypical IκB proteins Bcl-3, IκBζ, IκBNS, IκBη and IκBL for the regulation of gene expression and effector functions in immune cells.
    • Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus.

      Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J (2014-07)
      Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.
    • Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation.

      Garg, Garima; Muschaweckh, Andreas; Moreno, Helena; Vasanthakumar, Ajithkumar; Floess, Stefan; Lepennetier, Gildas; Oellinger, Rupert; Zhan, Yifan; Regen, Tommy; Hiltensperger, Michael; et al. (Elsevier (Cell Press), 2019-02-12)
      Summary Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.
    • c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma.

      Luebke, Tobias; Schwarz, Lisa; Beer, Yan Yan; Schumann, Sabrina; Misterek, Maria; Sander, Frida Ewald; Plaza-Sirvent, Carlos; Schmitz, Ingo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-05-16)
      Clear cell renal cell carcinoma (ccRCC) is the most-prominent tumor type of kidney cancers. Resistance of renal cell carcinoma (RCC) against tumor therapy is often owing to apoptosis resistance, e.g., by overexpression of anti-apoptotic proteins. However, little is known about the role of the apoptosis inhibitor c-FLIP and its potential impact on death receptor-induced apoptosis in ccRCC cells. In this study, we demonstrate that c-FLIP is crucial for resistance against CD95L-induced apoptosis in four ccRCC cell lines. Strikingly, downregulation of c-FLIP expression by short hairpin RNA (shRNA)interference led to spontaneous caspase activation and apoptotic cell death. Of note, knockdown of all c-FLIP splice variants was required to induce apoptosis. Stimulation of ccRCC cells with CD95L induced NF-κB and MAP kinase survival pathways as revealed by phosphorylation of RelA/p65 and Erk1/2. Interestingly, CD95L surface expression was high in all cell lines analyzed, and CD95 but not TNF-R1 clustered at cell contact sites. Downstream of CD95, inhibition of the NF-κB pathway led to spontaneous cell death. Surprisingly, knockdown experiments revealed that c-FLIP inhibits NF-κB activation in the context of CD95 signaling. Thus, c-FLIP inhibits apoptosis and dampens NF-κB downstream of CD95 but allows NF-κB activation to a level sufficient for ccRCC cell survival. In summary, we demonstrate a complex CD95-FLIP-NF-κB-signaling circuit, in which CD95-CD95L interactions mediate a paracrine survival signal in ccRCC cells with c-FLIP and NF-κB both being required for inhibiting cell death and ensuring survival. Our findings might lead to novel therapeutic approaches of RCC by circumventing apoptosis resistance.
    • c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity.

      Plaza-Sirvent, Carlos; Schuster, Marc; Neumann, Yvonne; Heise, Ulrike; Pils, Marina C; Schulze-Osthoff, Klaus; Schmitz, Ingo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-03)
      Regulatory T (Treg) cells are critical for the shutdown of immune responses and have emerged as valuable targets of immunotherapies. Treg cells can rapidly proliferate; however, the homeostatic processes that limit excessive Treg cell numbers are poorly understood. Here, we show that, compared to conventional T cells, Treg cells have a high apoptosis rate ex vivo correlating with low c-FLIP expression. Treg-specific deletion of c-FLIP in mice resulted in fatal autoimmune disease of a scurfy-like phenotype characterized by absent peripheral Treg cells, activation of effector cells, multi-organ immune cell infiltration, and premature death. Surprisingly, blocking CD95L did not rescue Treg survival in vivo, suggesting additional survival functions of c-FLIP in Treg cells in addition to its classical role in the inhibition of death receptor signaling. Thus, our data reveal a central role for c-FLIP in Treg cell homeostasis and prevention of autoimmunity.
    • CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity.

      Mayer, Christian T; Floess, Stefan; Baru, Abdul Mannan; Lahl, Katharina; Huehn, Jochen; Sparwasser, Tim (2011-03)
      "Suppressor T cells" were historically defined within the CD8(+) T-cell compartment and recent studies have highlighted several naturally occurring CD8(+) Foxp3(-) Treg populations. However, the relevance of CD8(+) Foxp3(+) T cells, which represent a minor population in both thymi and secondary lymphoid organs of nonmanipulated mice, remains unclear. We here demonstrate that de novo Foxp3 induction in peripheral CD8(+) Foxp3(-) T cells is counter-regulated by DC-mediated co-stimulation via CD80/CD86. CD8(+) Foxp3(+) T cells fail to develop in TCR-transgenic mice with Rag1(-/-) background, similar to classical CD4(+) Foxp3(+) Tregs. Notably, both naturally occurring and induced CD8(+) Foxp3(+) T cells express bona fide Treg markers including CD25, GITR, CTLA4 and CD103, and show defective IFN-γ production upon restimulation when compared with their CD8(+) Foxp3(-) counterparts. However, utilizing DEREG transgenic mice for the isolation of Foxp3(+) cells by eGFP reporter expression, we demonstrate that induced CD8(+) Foxp3(+) T cells similar to activated CD8(+) Foxp3(-) T cells only mildly suppress T-cell proliferation and IFN-γ production. We therefore categorize CD8(+) Foxp3(+) T cells as a tightly controlled population sharing certain developmental and phenotypic properties with classical CD4(+) Foxp3(+) Tregs, but lacking potent suppressive activity.
    • Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice.

      Ewald, F; Annemann, M; Pils, M C; Plaza-Sirvent, C; Neff, F; Erck, C; Reinhold, D; Schmitz, I (2014)
      Death receptor-mediated apoptosis is a key mechanism for the control of immune responses and dysregulation of this pathway may lead to autoimmunity. Cellular FLICE-inhibitory proteins (c-FLIPs) are known as inhibitors of death receptor-mediated apoptosis. The only short murine c-FLIP splice variant is c-FLIPRaji (c-FLIPR). To investigate the functional role of c-FLIPR in the immune system, we used the vavFLIPR mouse model constitutively expressing murine c-FLIPR in all hematopoietic compartments. Lymphocytes from these mice are protected against CD95-mediated apoptosis and activation-induced cell death. Young vavFLIPR mice display normal lymphocyte compartments, but the lymphocyte populations alter with age. We identified reduced levels of T cells and slightly higher levels of B cells in 1-year-old vavFLIPR mice compared with wild-type (WT) littermates. Moreover, both B and T cells from aged vavFLIPR animals show activated phenotypes. Sera from 1-year-old WT and transgenic animals were analysed for anti-nuclear antibodies. Notably, elevated titres of these autoantibodies were detected in vavFLIPR sera. Furthermore, tissue damage in kidneys and lungs from aged vavFLIPR animals was observed, indicating that vavFLIPR mice develop a systemic lupus erythematosus-like phenotype with age. Taken together, these data suggest that c-FLIPR is an important modulator of apoptosis and enforced expression leads to autoimmunity.
    • Development of a unique epigenetic signature during in vivo Th17 differentiation.

      Yang, Bi-Huei; Floess, Stefan; Hagemann, Stefanie; Deyneko, Igor V; Groebe, Lothar; Pezoldt, Joern; Sparwasser, Tim; Lochner, Matthias; Huehn, Jochen; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-02-18)
      Activated naive CD4(+) T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4(+) T cells, Th1 and Th17 cells. We could demonstrate that naive CD4(+) T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
    • Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells.

      Sosna, Justyna; Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; et al. (2016-10-15)
      Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H(+)-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches.
    • Dynamic Imprinting of the Treg Cell-Specific Epigenetic Signature in Developing Thymic Regulatory T Cells.

      Herppich, Susanne; Toker, Aras; Pietzsch, Beate; Kitagawa, Yohko; Ohkura, Naganari; Miyao, Takahisa; Floess, Stefan; Hori, Shohei; Sakaguchi, Shimon; Huehn, Jochen; et al. (Frontiers, 2019-01-01)
      Regulatory T (Treg) cells mainly develop within the thymus and arise from CD25+Foxp3- (CD25+ TregP) or CD25-Foxp3+ (Foxp3+ TregP) Treg cell precursors resulting in Treg cells harboring distinct transcriptomic profiles and complementary T cell receptor repertoires. The stable and long-term expression of Foxp3 in Treg cells and their stable suppressive phenotype are controlled by the demethylation of Treg cell-specific epigenetic signature genes including an evolutionarily conserved CpG-rich element within the Foxp3 locus, the Treg-specific demethylated region (TSDR). Here we analyzed the dynamics of the imprinting of the Treg cell-specific epigenetic signature genes in thymic Treg cells. We could demonstrate that CD25+Foxp3+ Treg cells show a progressive demethylation of most signature genes during maturation within the thymus. Interestingly, a partial demethylation of several Treg cell-specific epigenetic signature genes was already observed in Foxp3+ TregP but not in CD25+ TregP. Furthermore, Foxp3+ TregP were very transient in nature and arose at a more mature developmental stage when compared to CD25+ TregP. When the two Treg cell precursors were cultured in presence of IL-2, a factor known to be critical for thymic Treg cell development, we observed a major impact of IL-2 on the demethylation of the TSDR with a more pronounced effect on Foxp3+ TregP. Together, these results suggest that the establishment of the Treg cell-specific hypomethylation pattern is a continuous process throughout thymic Treg cell development and that the two known Treg cell precursors display distinct dynamics for the imprinting of the Treg cell-specific epigenetic signature genes.
    • Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia.

      Prajeeth, Chittappen K; Löhr, Kirsten; Floess, Stefan; Zimmermann, Julian; Ulrich, Reiner; Gudi, Viktoria; Beineke, Andreas; Baumgärtner, Wolfgang; Müller, Marcus; Huehn, Jochen; et al. (2014-03)
      Microglia act as sensors of inflammation in the central nervous system (CNS) and respond to many stimuli. Other key players in neuroinflammatory diseases are CD4+ T helper cell (Th) subsets that characteristically secrete IFN-γ (Th1) or IL-17 (Th17). However, the potential of a distinct cytokine milieu generated by these effector T cell subsets to modulate microglial phenotype and function is poorly understood. We therefore investigated the ability of factors secreted by Th1 and Th17 cells to induce microglial activation. In vitro experiments wherein microglia were cultured in the presence of supernatants derived from polarized Th1 or Th17 cultures, revealed that Th1-associated factors could directly activate and trigger a proinflammatory M1-type gene expression profile in microglia that was cell-cell contact independent, whereas Th17 cells or its associated factors did not have any direct influence on microglia. To assess the effects of the key Th17 effector cytokine IL-17A in vivo we used transgenic mice in which IL-17A is specifically expressed in astrocytes. Flow cytometric and histological analysis revealed only subtle changes in the phenotype of microglia suggesting only minimal effects of constitutively produced IL-17A on microglia in vivo. Neither IL-23 signaling nor addition of GM-CSF, a recently described effector molecule of Th17 cells, changed the incapacity of Th17 cells to activate microglia. These findings demonstrate a potent effect of Th1 cells on microglia, however, the mechanism of how Th17 cells achieve their effect in CNS inflammation remains unclear.
    • Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

      Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; et al. (2017-10-16)
      Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS.
    • Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

      Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; et al. (2017-10-16)
      Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4 We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.
    • Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells.

      Steinfelder, Svenja; Floess, Stefan; Engelbert, Dirk; Haeringer, Barbara; Baron, Udo; Rivino, Laura; Steckel, Bodo; Gruetzkau, Andreas; Olek, Sven; Geginat, Jens; et al. (2011-03-10)
      CCR6 is a chemokine receptor expressed on Th17 cells and regulatory T cells that is induced by T-cell priming with certain cytokines, but how its expression and stability are regulated at the molecular level is largely unknown. Here, we identified and characterized a noncoding region of the human CCR6 locus that displayed unmethylated CpG motifs (differentially methylated region [DMR]) selectively in CCR6(+) lymphocytes. CCR6 expression on circulating CD4(+) T cells was stable on cytokine-induced proliferation but partially down-regulated on T-cell receptor stimulation. However, CCR6 down-regulation was mostly transient, and the DMR within the CCR6 locus remained demethylated. Notably, in vitro induction of CCR6 expression with cytokines in T-cell receptor-activated naive CD4(+) T cells was not associated with a demethylated DMR and resulted in unstable CCR6 expression. Conversely, treatment with the DNA methylation inhibitor 5'-azacytidine induced demethylation of the DMR and led to increased and stable CCR6 expression. Finally, when cloned into a reporter gene plasmid, the DMR displayed transcriptional activity in memory T cells that was suppressed by DNA methylation. In summary, we have identified a noncoding region of the human CCR6 gene with methylation-sensitive transcriptional activity in CCR6(+) T cells that controls stable CCR6 expression via epigenetic mechanisms.
    • Epigenetic orchestration of thymic Treg cell development.

      Beyer, Marc; Huehn, Jochen; Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-19)
    • Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway.

      Hubert, Sandra; Rissiek, Björn; Klages, Katjana; Huehn, Jochen; Sparwasser, Tim; Haag, Friedrich; Koch-Nolte, Friedrich; Boyer, Olivier; Seman, Michel; Adriouch, Sahil; et al. (2010-11-22)
      CD4(+)CD25(+)FoxP3(+) regulatory T cells (T reg cells) play a major role in the control of immune responses but the factors controlling their homeostasis and function remain poorly characterized. Nicotinamide adenine dinucleotide (NAD(+)) released during cell damage or inflammation results in ART2.2-mediated ADP-ribosylation of the cytolytic P2X7 receptor on T cells. We show that T reg cells express the ART2.2 enzyme and high levels of P2X7 and that T reg cells can be depleted by intravenous injection of NAD(+). Moreover, lower T reg cell numbers are found in mice deficient for the NAD-hydrolase CD38 than in wild-type, P2X7-deficient, or ART2-deficient mice, indicating a role for extracellular NAD(+) in T reg cell homeostasis. Even routine cell preparation leads to release of NAD(+) in sufficient quantities to profoundly affect T reg cell viability, phenotype, and function. We demonstrate that T reg cells can be protected from the deleterious effects of NAD(+) by an inhibitory ART2.2-specific single domain antibody. Furthermore, selective depletion of T reg cells by systemic administration of NAD(+) can be used to promote an antitumor response in several mouse tumor models. Collectively, our data demonstrate that NAD(+) influences survival, phenotype, and function of T reg cells and provide proof of principle that acting on the ART2-P2X7 pathway represents a new strategy to manipulate T reg cells in vivo.