• Recirculating IL-1R2 Tregs fine-tune intrathymic Treg development under inflammatory conditions.

      Nikolouli, Eirini; Elfaki, Yassin; Herppich, Susanne; Schelmbauer, Carsten; Delacher, Michael; Falk, Christine; Mufazalov, Ilgiz A; Waisman, Ari; Feuerer, Markus; Huehn, Jochen; et al. (Springer Nature, 2020-01-27)
      The vast majority of Foxp3+ regulatory T cells (Tregs) are generated in the thymus, and several factors, such as cytokines and unique thymic antigen-presenting cells, are known to contribute to the development of these thymus-derived Tregs (tTregs). Here, we report the existence of a specific subset of Foxp3+ Tregs within the thymus that is characterized by the expression of IL-1R2, which is a decoy receptor for the inflammatory cytokine IL-1. Detailed flow cytometric analysis of the thymocytes from Foxp3hCD2xRAG1GFP reporter mice revealed that the IL-1R2+ Tregs are mainly RAG1GFP- and CCR6+CCR7-, demonstrating that these Tregs are recirculating cells entering the thymus from the periphery and that they have an activated phenotype. In the spleen, the majority of IL-1R2+ Tregs express neuropilin-1 (Nrp-1) and Helios, suggesting a thymic origin for these Tregs. Interestingly, among all tissues studied, the highest frequency of IL-1R2+ Tregs was observed in the thymus, indicating preferential recruitment of this Treg subset by the thymus. Using fetal thymic organ cultures (FTOCs), we demonstrated that increased concentrations of exogenous IL-1β blocked intrathymic Treg development, resulting in a decreased frequency of CD25+Foxp3+ tTregs and an accumulation of CD25+Foxp3- Treg precursors. Interestingly, the addition of IL-1R2+ Tregs, but not IL-1R2- Tregs, to reaggregated thymic organ cultures (RTOCs) abrogated the IL-1β-mediated blockade, demonstrating that these recirculating IL-1R2+ Tregs can quench IL-1 signaling in the thymus and thereby maintain thymic Treg development even under inflammatory conditions.
    • Regulation of neuroinflammatory properties of glial cells by T cell effector molecules.

      Prajeeth, Chittappen K; Huehn, Jochen; Stangel, Martin; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02)
    • The role of c-FLIP splice variants in urothelial tumours.

      Ewald, F; Ueffing, N; Brockmann, L; Hader, C; Telieps, T; Schuster, M; Schulz, W A; Schmitz, I; Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany. (2011)
      Deregulation of apoptosis is common in cancer and is often caused by overexpression of anti-apoptotic proteins in tumour cells. One important regulator of apoptosis is the cellular FLICE-inhibitory protein (c-FLIP), which is overexpressed, for example, in melanoma and Hodgkin's lymphoma cells. Here, we addressed the question whether deregulated c-FLIP expression in urothelial carcinoma impinges on the ability of death ligands to induce apoptosis. In particular, we investigated the role of the c-FLIP splice variants c-FLIP(long) (c-FLIP(L)) and c-FLIP(short) (c-FLIP(S)), which can have opposing functions. We observed diminished expression of the c-FLIP(L) isoform in urothelial carcinoma tissues as well as in established carcinoma cell lines compared with normal urothelial tissues and cells, whereas c-FLIP(S) was unchanged. Overexpression and RNA interference studies in urothelial cell lines nevertheless demonstrated that c-FLIP remained a crucial factor conferring resistance towards induction of apoptosis by death ligands CD95L and TRAIL. Isoform-specific RNA interference showed c-FLIP(L) to be of particular importance. Thus, urothelial carcinoma cells appear to fine-tune c-FLIP expression to a level sufficient for protection against activation of apoptosis by the extrinsic pathway. Therefore, targeting c-FLIP, and especially the c-FLIP(L) isoform, may facilitate apoptosis-based therapies of bladder cancer in otherwise resistant tumours.
    • Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1γ.

      Trsan, Tihana; Busche, Andreas; Abram, Maja; Wensveen, Felix M; Lemmermann, Niels A; Arapovic, Maja; Babic, Marina; Tomic, Adriana; Golemac, Mijo; Brinkmann, Melanie M; et al. (2013-10-08)
      Due to a unique pattern of CD8 T-cell response induced by cytomegaloviruses (CMVs), live attenuated CMVs are attractive candidates for vaccine vectors for a number of clinically relevant infections and tumors. NKG2D is one of the most important activating NK cell receptors that plays a role in costimulation of CD8 T cells. Here we demonstrate that the expression of CD8 T-cell epitope of Listeria monocytogenes by a recombinant mouse CMV (MCMV) expressing the NKG2D ligand retinoic acid early-inducible protein 1-gamma (RAE-1γ) dramatically enhanced the effectiveness and longevity of epitope-specific CD8 T-cell response and conferred protection against a subsequent challenge infection with Listeria monocytogenes. Unexpectedly, the attenuated growth in vivo of the CMV vector expressing RAE-1γ and its capacity to enhance specific CD8 T-cell response were preserved even in mice lacking NKG2D, implying additional immune function for RAE-1γ beyond engagement of NKG2D. Thus, vectors expressing RAE-1γ represent a promising approach in the development of CD8 T-cell-based vaccines.
    • TCR signalling network organization at the immunological synapses of murine regulatory T cells.

      van Ham, Marco; Teich, René; Philipsen, Lars; Niemz, Jana; Amsberg, Nicole; Wissing, Josef; Nimtz, Manfred; Gröbe, Lothar; Kliche, Stefanie; Thiel, Nadine; et al. (2017-08-17)
      Regulatory T (Treg) cells require T-cell receptor (TCR) signalling to exert their immunosuppressive activity, but the precise organization of the TCR signalling network compared to conventional T (Tconv) cells remains elusive. By using accurate mass spectrometry and multi-epitope ligand cartography (MELC) we characterized TCR signalling and recruitment of TCR signalling components to the immunological synapse (IS) in Treg cells and Tconv cells. With the exception of Themis which we detected in lower amounts in Treg cells, other major TCR signalling components were found equally abundant, however, their phosphorylation-status notably discriminates Treg cells from Tconv cells. Overall, this study identified 121 Treg cell-specific phosphorylations. Short-term triggering of T cell subsets via CD3 and CD28 widely harmonized these variations with the exception of eleven TCR signalling components that mainly regulate cytoskeleton dynamics and molecular transport. Accordingly, conjugation with B cells indeed caused variant cellular morphology and revealed a Treg cell-specific recruitment of TCR signalling components such as PKCθ, PLCγ1 and ZAP70 as well as B cell-derived CD86 into the IS. Together, results from this study support the existence of a Treg cell-specific IS and suggest Treg cell-specific cytoskeleton dynamics as a novel determinant for the unique functional properties of Treg cells.
    • TGF-β Signalling Is Required for CD4(+) T Cell Homeostasis But Dispensable for Regulatory T Cell Function.

      Sledzińska, Anna; Hemmers, Saskia; Mair, Florian; Gorka, Oliver; Ruland, Jürgen; Fairbairn, Lynsey; Nissler, Anja; Müller, Werner; Waisman, Ari; Becher, Burkhard; et al. (2013-10)
      TGF-β is widely held to be critical for the maintenance and function of regulatory T (Treg) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β-driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4(+) T cells. Inducible TR2 ablation specifically on CD4(+) T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4(+) T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4(+) T cells does not result in the collapse of the Treg cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-β signalling and the TR2-deficient Treg cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-β signalling on mature CD4(+) T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice.
    • To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms.

      Toker, Aras; Huehn, Jochen; Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2011)
      Regulatory T (T(reg)) cells are a unique CD4(+) T cell lineage that plays a crucial role in the maintenance of immunological tolerance. The Forkhead box transcription factor Foxp3 is critically involved in T(reg) cell development and responsible for determining the suppressive function of these cells. The majority of Foxp3(+) T(reg) cells are generated during T cell development within the thymus and show features of a stable T cell lineage. New work indicates that both induction and stabilization of Foxp3 expression are under epigenetic control, which suggests that selective interference with the underlying chromatin remodeling mechanisms might enable the development of future therapeutic strategies targeting T(reg) cells.
    • The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 Regulatory T Cells.

      Andersen, Liisa; Gülich, Alexandra Franziska; Alteneder, Marlis; Preglej, Teresa; Orola, Maria Jonah; Dhele, Narendra; Stolz, Valentina; Schebesta, Alexandra; Hamminger, Patricia; Hladik, Anastasiya; et al. (Elsevier/Cell Press, 2019-12-24)
      Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
    • The Treg-specific demethylated region stabilizes Foxp3 expression independently of NF-κB signaling.

      Schreiber, Lisa; Pietzsch, Beate; Floess, Stefan; Farah, Carla; Jänsch, Lothar; Schmitz, Ingo; Huehn, Jochen; Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2014)
      Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs.
    • UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene.

      Chaudhry, M Zeeshan; Kasmapour, Bahram; Plaza-Sirvent, Carlos; Bajagic, Milica; Casalegno Garduño, Rosaely; Borkner, Lisa; Lenac Roviš, Tihana; Scrima, Andrea; Jonjic, Stipan; Schmitz, Ingo; et al. (2017)
      Apoptosis is an important defense mechanism mounted by the immune system to control virus replication. Hence, cytomegaloviruses (CMV) evolved and acquired numerous anti-apoptotic genes. The product of the human CMV (HCMV) UL36 gene, pUL36 (also known as vICA), binds to pro-caspase-8, thus inhibiting death-receptor apoptosis and enabling viral replication in differentiated THP-1 cells. In vivo studies of the function of HCMV genes are severely limited due to the strict host specificity of cytomegaloviruses, but CMV orthologues that co-evolved with other species allow the experimental study of CMV biology in vivo. The mouse CMV (MCMV) homolog of the UL36 gene is called M36, and its protein product (pM36) is a functional homolog of vICA that binds to murine caspase-8 and inhibits its activation. M36-deficient MCMV is severely growth impaired in macrophages and in vivo. Here we show that pUL36 binds to the murine pro-caspase-8, and that UL36 expression inhibits death-receptor apoptosis in murine cells and can replace M36 to allow MCMV growth in vitro and in vivo. We generated a chimeric MCMV expressing the UL36 ORF sequence instead of the M36 one. The newly generated MCMV(UL36) inhibited apoptosis in macrophage lines RAW 264.7, J774A.1, and IC-21 and its growth was rescued to wild type levels. Similarly, growth was rescued in vivo in the liver and spleen, but only partially in the salivary glands of BALB/c and C57BL/6 mice. In conclusion, we determined that an immune-evasive HCMV gene is conserved enough to functionally replace its MCMV counterpart and thus allow its study in an in vivo setting. As UL36 and M36 proteins engage the same molecular host target, our newly developed model can facilitate studies of anti-viral compounds targeting pUL36 in vivo.
    • Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells.

      Garg, Garima; Nikolouli, Eirini; Hardtke-Wolenski, Matthias; Toker, Aras; Ohkura, Naganari; Beckstette, Michael; Miyao, Takahisa; Geffers, Robert; Floess, Stefan; Gerdes, Norbert; et al. (2017-05-30)
      Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.
    • Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice.

      Uhde, Ann-Kathrin; Herder, Vanessa; Akram Khan, Muhammad; Ciurkiewicz, Malgorzata; Schaudien, Dirk; Teich, René; Floess, Stefan; Baumgärtner, Wolfgang; Huehn, Jochen; Beineke, Andreas; et al. (2016)
      Theiler´s murine encephalomyelitis virus (TMEV)-infection is a widely used animal model for studying demyelinating disorders, including multiple sclerosis (MS). The immunosuppressive cytokine Interleukin (IL)-10 counteracts hyperactive immune responses and critically controls immune homeostasis in infectious and autoimmune disorders. In order to investigate the effect of signaling via Interleukin-10 receptor (IL-10R) in infectious neurological diseases, TMEV-infected SJL mice were treated with IL-10R blocking antibody (Ab) in the acute and chronic phase of the disease. The findings demonstrate that (i) Ab-mediated IL-10 neutralization leads to progressive colitis with a reduction in Foxp3+ regulatory T cells and increased numbers of CD8+CD44+ memory T cells as well as activated CD4+CD69+ and CD8+CD69+ T cells in uninfected mice. (ii) Concurrent acute TMEV-infection worsened enteric disease-mediated by IL-10R neutralization. Virus-triggered effects were associated with an enhanced activation of CD4+ T helper cells and CD8+ cytotoxic T lymphocytes and augmented cytokine expression. By contrast, (iii) IL-10R neutralization during chronic TMEV-infection was not associated with enhanced peripheral immunopathology but an increased CD3+ T cell influx in the spinal cord. IL-10R neutralization causes a breakdown in peripheral immune tolerance in genetically predisposed mice, which leads to immune-mediated colitis, resembling inflammatory bowel disease. Hyperactive immune state following IL-10R blockade is enhanced by central nervous system-restricted viral infection in a disease phase-dependent manner.
    • Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation.

      Kouakanou, Léonce; Peters, Christian; Sun, Qiwei; Floess, Stefan; Bhat, Jaydeep; Huehn, Jochen; Kabelitz, Dieter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature Publishing Group, 2020-04-16)
      Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene
    • Yersinia Pseudotuberculosis Modulates Regulatory T Cell Stability via Injection of Yersinia Outer Proteins in a Type III Secretion System-Dependent Manner.

      Elfiky, Ahmed; Bonifacius, Agnes; Pezoldt, Joern; Pasztoi, Maria; Chaoprasid, Paweena; Sadana, Pooja; El-Sherbeeny, Nagla; Hagras, Magda; Scrima, Andrea; Dersch, Petra; et al. (Akadémiai Kiadó, 2018-12-23)
      Adaptive immunity is essentially required to control acute infection with enteropathogenic
    • Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling.

      Pasztoi, Maria; Bonifacius, Agnes; Pezoldt, Joern; Kulkarni, Devesha; Niemz, Jana; Yang, Juhao; Teich, René; Hajek, Janina; Pisano, Fabio; Rohde, Manfred; et al. (2017-04-04)
      Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4(+) T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4(+) T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3(+) regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4(+) T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4(+) T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3(+) Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4(+) T cell subsets by altering their TCR downstream signaling.