• Dynamic Imprinting of the Treg Cell-Specific Epigenetic Signature in Developing Thymic Regulatory T Cells.

      Herppich, Susanne; Toker, Aras; Pietzsch, Beate; Kitagawa, Yohko; Ohkura, Naganari; Miyao, Takahisa; Floess, Stefan; Hori, Shohei; Sakaguchi, Shimon; Huehn, Jochen; et al. (Frontiers, 2019-01-01)
      Regulatory T (Treg) cells mainly develop within the thymus and arise from CD25+Foxp3- (CD25+ TregP) or CD25-Foxp3+ (Foxp3+ TregP) Treg cell precursors resulting in Treg cells harboring distinct transcriptomic profiles and complementary T cell receptor repertoires. The stable and long-term expression of Foxp3 in Treg cells and their stable suppressive phenotype are controlled by the demethylation of Treg cell-specific epigenetic signature genes including an evolutionarily conserved CpG-rich element within the Foxp3 locus, the Treg-specific demethylated region (TSDR). Here we analyzed the dynamics of the imprinting of the Treg cell-specific epigenetic signature genes in thymic Treg cells. We could demonstrate that CD25+Foxp3+ Treg cells show a progressive demethylation of most signature genes during maturation within the thymus. Interestingly, a partial demethylation of several Treg cell-specific epigenetic signature genes was already observed in Foxp3+ TregP but not in CD25+ TregP. Furthermore, Foxp3+ TregP were very transient in nature and arose at a more mature developmental stage when compared to CD25+ TregP. When the two Treg cell precursors were cultured in presence of IL-2, a factor known to be critical for thymic Treg cell development, we observed a major impact of IL-2 on the demethylation of the TSDR with a more pronounced effect on Foxp3+ TregP. Together, these results suggest that the establishment of the Treg cell-specific hypomethylation pattern is a continuous process throughout thymic Treg cell development and that the two known Treg cell precursors display distinct dynamics for the imprinting of the Treg cell-specific epigenetic signature genes.
    • Generation of Foxp3CD25 Regulatory T-Cell Precursors Requires c-Rel and IκB.

      Schuster, Marc; Plaza-Sirvent, Carlos; Visekruna, Alexander; Huehn, Jochen; Schmitz, Ingo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Next to the classical developmental route, in which first CD25 and subsequently Foxp3 are induced to generate thymic regulatory T (Treg) cells, an alternative route has been described. This alternative route is characterized by reciprocal induction of Foxp3 and CD25, with CD25 induction being required to rescue developing Treg cells from Foxp3-induced apoptosis. NF-κB has been demonstrated to be crucial for the development of thymic Treg cells via the classical route. However, its impact on the alternative route is poorly characterized. Using single and double deficient mice for key regulators of the classical route, c-Rel and IκBNS, we here demonstrate that NF-κB is essential for the generation of alternative CD25-Foxp3+ precursors, as well. Thus, c-Rel and IκBNS govern both routes of thymic Treg cell development.