Thermodynamically reengineering the listerial invasion complex InlA/E-cadherin.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2007-08-28
Metadata
Show full item recordAbstract
Biological processes essentially all depend on the specific recognition between macromolecules and their interaction partners. Although many such interactions have been characterized both structurally and biophysically, the thermodynamic effects of small atomic changes remain poorly understood. Based on the crystal structure of the bacterial invasion protein internalin (InlA) of Listeria monocytogenes in complex with its human receptor E-cadherin (hEC1), we analyzed the interface to identify single amino acid substitutions in InlA that would potentially improve the overall quality of interaction and hence increase the weak binding affinity of the complex. Dissociation constants of InlA-variant/hEC1 complexes, as well as enthalpy and entropy of binding, were quantified by isothermal titration calorimetry. All single substitutions indeed significantly increase binding affinity. Structural changes were verified crystallographically at < or =2.0-A resolution, allowing thermodynamic characteristics of single substitutions to be rationalized structurally and providing unique insights into atomic contributions to binding enthalpy and entropy. Structural and thermodynamic data of all combinations of individual substitutions result in a thermodynamic network, allowing the source of cooperativity between distant recognition sites to be identified. One such pair of single substitutions improves affinity 5,000-fold. We thus demonstrate that rational reengineering of protein complexes is possible by making use of physically distant hot spots of recognition.Citation
Thermodynamically reengineering the listerial invasion complex InlA/E-cadherin. 2007, 104 (35):13960-5 Proc. Natl. Acad. Sci. U.S.A.Affiliation
Molecular Host-Pathogen Interactions, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.PubMed ID
17715295Type
ArticleLanguage
enISSN
0027-8424ae974a485f413a2113503eed53cd6c53
10.1073/pnas.0702199104
Scopus Count
The following license files are associated with this item:
Related articles
- Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin.
- Authors: Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW
- Issue date: 2002 Dec 13
- Extending the host range of Listeria monocytogenes by rational protein design.
- Authors: Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, Gruber AD, Heinz DW, Lengeling A, Schubert WD
- Issue date: 2007 Jun 1
- A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes.
- Authors: Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P
- Issue date: 1999 Jul 15
- Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain.
- Authors: Schubert WD, Göbel G, Diepholz M, Darji A, Kloer D, Hain T, Chakraborty T, Wehland J, Domann E, Heinz DW
- Issue date: 2001 Sep 28
- Listeria monocytogenes internalin and E-cadherin: from bench to bedside.
- Authors: Bonazzi M, Lecuit M, Cossart P
- Issue date: 2009 Oct