• Adolescent health in the Eastern Mediterranean Region: findings from the global burden of disease 2015 study.

      Karch, Andre; GBD 2015 Eastern Mediterranean Region Adolescent Health Collaborators.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-01)
      The 22 countries of the East Mediterranean Region (EMR) have large populations of adolescents aged 10-24 years. These adolescents are central to assuring the health, development, and peace of this region. We described their health needs. Using data from the Global Burden of Disease Study 2015 (GBD 2015), we report the leading causes of mortality and morbidity for adolescents in the EMR from 1990 to 2015. We also report the prevalence of key health risk behaviors and determinants. Communicable diseases and the health consequences of natural disasters reduced substantially between 1990 and 2015. However, these gains have largely been offset by the health impacts of war and the emergence of non-communicable diseases (including mental health disorders), unintentional injury, and self-harm. Tobacco smoking and high body mass were common health risks amongst adolescents. Additionally, many EMR countries had high rates of adolescent pregnancy and unmet need for contraception. Even with the return of peace and security, adolescents will have a persisting poor health profile that will pose a barrier to socioeconomic growth and development of the EMR.
    • CSF neurogranin as a neuronal damage marker in CJD: a comparative study with AD.

      Blennow, Kaj; Diaz-Lucena, Daniela; Zetterberg, Henrik; Villar-Pique, Anna; Karch, Andre; Vidal, Enric; Hermann, Peter; Schmitz, Matthias; Ferrer Abizanda, Isidro; Zerr, Inga; et al. (BMJ Publishing Group, 2019-05-16)
      Objective: To investigate whether cerebrospinal fluid (CSF) neurogranin concentrations are altered in sporadic Creutzfeldt-Jakob disease (CJD), comparatively with Alzheimer's disease (AD), and associated with neuronal degeneration in brain tissue. Methods: CSF neurogranin, total tau, neurofilament light (NFL) and 14-3-3 protein were measured in neurological controls (NCs, n=64), AD (n=46) and CJD (n=81). The accuracy of neurogranin discriminating the three diagnostic groups was evaluated. Correlations between neurogranin and neurodegeneration biomarkers, demographic, genetic and clinical data were assessed. Additionally, neurogranin expression in postmortem brain tissue was studied. Results: Compared with NC, CSF neurogranin concentrations were increased in CJD (4.75 times of NC; p<0.001, area under curve (AUC), 0.96 (95% CI 0.93 to 0.99) and AD (1.94 times of NC; p<0.01, AUC 0.73, 95% CI 0.62 to 0.82), and were able to differentiate CJD from AD (p<0.001, AUC 0.85, 95% CI 0.78 to 0.92). CSF tau was increased in CJD (41 times of NC) and in AD (3.1 times of NC), both at p<0.001. In CJD, neurogranin positively correlated with tau (r=0.55, p<0.001) and was higher in 14-3-3-positivity (p<0.05), but showed no association with NFL (r=0.08, p=0.46). CJD-MM1/MV1 cases displayed higher neurogranin levels than VV2 cases. Neurogranin was increased at early CJD disease stages and was a good prognostic marker of survival time in CJD. In brain tissue, neurogranin was detected in the cytoplasm, membrane and postsynaptic density fractions of neurons, with reduced levels in AD, and more significantly in CJD, where they correlated with synaptic and axonal markers. Conclusions: Neurogranin is a new biomarker of prion pathogenesis with diagnostic and prognostic abilities, which reflects the degree of neuronal damage in brain tissue in a CJD subtype manner. Keywords: alzheimer’s disease; cerebrospinal fluid; creutzfeldt-jakob disease; neurodegenerative dementias; neurofilament light; neurogranin; tau.
    • Global, regional, and national burden of meningitis, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

      Zunt, Joseph Raymund; GBD 2016 Meningitis Collaborators; Karch, Andre; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (Elsevier, 2018-12-01)
      SummaryBackground Acute meningitis has a high case-fatality rate and survivors can have severe lifelong disability. We aimed to provide a comprehensive assessment of the levels and trends of global meningitis burden that could help to guide introduction, continuation, and ongoing development of vaccines and treatment programmes.Methods The Global Burden of Diseases, Injuries, and Risk Factors (GBD) 2016 study estimated meningitis burden due to one of four types of cause: pneumococcal, meningococcal, Haemophilusinfluenzae type b, and a residual category of other causes. Cause-specific mortality estimates were generated via cause of death ensemble modelling of vital registration and verbal autopsy data that were subject to standardised data processing algorithms. Deaths were multiplied by the GBD standard life expectancy at age of death to estimate years of life lost, the mortality component of disability-adjusted life-years (DALYs). A systematic analysis of relevant publications and hospital and claims data was used to estimate meningitis incidence via a Bayesian meta-regression tool.Meningitis deaths and cases were split between causes with meta-regressions of aetiological proportions of mortality and incidence, respectively. Probabilities of long-term impairment by cause of meningitiswere applied to survivors and used to estimate years of life lived with disability (YLDs). We assessed the relationship between burden metrics and Socio-demographic Index (SDI), a composite measure of development based on fertility, income, and education.Findings Global meningitis deaths decreased by 21·0% from 1990 to 2016, from 403012 (95% uncertainty interval [UI] 319426–458514) to 318400 (265218–408705). Incident cases globally increased from 2·50 million (95% UI 2·19–2·91) in 1990 to 2·82 million (2·46–3·31) in 2016. Meningitis mortality and incidence were closely related toSDI. The highest mortality rates and incidence rates were found in the peri-Sahelian countries that comprise the African meningitis belt, with six of the ten countries with the largest number of cases and deaths being located within this region. Haemophilus influenzaetype b was the most common cause of incident meningitisin 1990, at 780070 cases (95% UI 613585–978219) globally, but decreased the most (–49·1%)to become the least commoncause in 2016, with 397297 cases (291076–533662). Meningococcus was the leading cause of meningitis mortality in 1990 (192833 deaths [95% UI153358–221503] globally), whereas other meningitis was the leading cause for both deaths (136423 [112682–178022]) and incident cases (1·25 million [1·06–1·49]) in 2016. Pneumococcus caused the largest number of YLDs (634458 [444787–839749]) in 2016, owing to its more severe long-term effects on survivors. Globally in 2016, 1·48 million (1·04—1·96) YLDs were due to meningitis compared with 21·87 million (18·20—28·28) DALYs, indicating that the contribution of mortality to meningitis burden is far greater than the contribution of disabling outcomes.Interpretation Meningitis burden remains high and progress lags substantially behind that of other vaccine-preventable diseases. Particular attention should be given to developing vaccines with broader coverage against the causes of meningitis, making these vaccines affordable in the most affected countries, improving vaccine uptake, improving access to low-cost diagnostics and therapeutics, and improving support for disabled survivors. Substantial uncertainty remains around pathogenic causes and risk factors for meningitis. Ongoing, active cause-specific surveillance of meningitis is crucial to continue and to improve monitoring of meningitis burdens and trends throughout the world.
    • Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

      James, Spencer Lewis; Karch, Andre; GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators (Elsevier Lancet, 2019-01-01)
      BackgroundTraumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury.Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our resultsfor disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility.FindingsIn 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30–30·30 million) new cases of TBI and 0·93 million (0·78–1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331–412) per 100000 population for TBI and 13 (11–16) per 100000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40–57·62 million) and of SCI was 27·04 million (24·98–30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (–0·2% [–2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI,but did not change significantly for SCI (–3·6% [–7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0–10·4 million) YLDs and SCI caused 9·5 million (6·7–12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82–141) per 100000 for TBI and 130 (90–170) per 100000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions.Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily byfalls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth,which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments.
    • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

      Stanaway, Jeffrey D.; Karch, Andre; Murray, Christopher J. L.; GBD 2017 Risk Factor Collaborators; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (Elsevier: Lancet, 2018-11-10)
      Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning.
    • Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

      Global Burden of Disease Study; Karch, Andre; James, Spencer Lewis; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Elsevier, 2018-11-10)
      BACKGROUND: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. METHODS: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. FINDINGS: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4-52·0). The TFR decreased from 4·7 livebirths (4·5-4·9) to 2·4 livebirths (2·2-2·5), and the ASFR of mothers aged 10-19 years decreased from 37 livebirths (34-40) to 22 livebirths (19-24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3-200·8) since 1950, from 2·6 billion (2·5-2·6) to 7·6 billion (7·4-7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15-64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9-1·2) in Cyprus to a high of 7·1 livebirths (6·8-7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07-0·09) in South Korea to 2·4 livebirths (2·2-2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3-0·4) in Puerto Rico to a high of 3·1 livebirths (3·0-3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. INTERPRETATION: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress.
    • Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016.

      Fullman, Nancy; GBD 2016 Healthcare Access and Quality Collaborators; Karch, Andre; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (Elsevier: Lancet, 2018-06-02)
      BACKGROUND: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. METHODS: Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. FINDINGS: In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. INTERPRETATION: GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations.