Show simple item record

dc.contributor.authorLai, FP
dc.contributor.authorSzczodrak, M
dc.contributor.authorBlock, J
dc.contributor.authorFaix, J
dc.contributor.authorBreitsprecher, D
dc.contributor.authorMannherz, HG
dc.contributor.authorStradal, TE
dc.contributor.authorDunn, GA
dc.contributor.authorSmall, JV
dc.contributor.authorRottner, K
dc.date.accessioned2008-04-07T09:08:14Z
dc.date.available2008-04-07T09:08:14Z
dc.date.issued2008-02-28
dc.identifier.citationArp2/3 complex interactions and actin network turnover in lamellipodia. 2008: EMBO J.en
dc.identifier.issn1460-2075
dc.identifier.pmid18309290
dc.identifier.doi10.1038/emboj.2008.34
dc.identifier.urihttp://hdl.handle.net/10033/22412
dc.description.abstractCell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.
dc.languageENG
dc.language.isonullen
dc.relation.urlhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18309290en
dc.titleArp2/3 complex interactions and actin network turnover in lamellipodia.
dc.typeArticleen
dc.contributor.departmentCytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.en
dc.identifier.journalThe EMBO journalen
refterms.dateFOA2018-06-12T20:03:48Z
html.description.abstractCell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.


Files in this item

Thumbnail
Name:
Lai et al_final.pdf
Size:
7.351Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record