Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen.
Name:
ferrer et al_final.pdf
Size:
1.779Mb
Format:
PDF
Description:
Open Access publication
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Ferrer, ManuelGhazi, Azam
Beloqui, Ana
Vieites, José María
López-Cortés, Nieves
Marín-Navarro, Julia
Nechitaylo, Taras Y
Guazzaroni, María-Eugenia
Polaina, Julio
Waliczek, Agnes
Chernikova, Tatyana N
Reva, Oleg N
Golyshina, Olga V
Golyshin, Peter N
Issue Date
2012
Metadata
Show full item recordAbstract
Microbial communities from cow rumen are known for their ability to degrade diverse plant polymers at high rates. In this work, we identified 15 hydrolases through an activity-centred metagenome analysis of a fibre-adherent microbial community from dairy cow rumen. Among them, 7 glycosyl hydrolases (GHs) and 1 feruloyl esterase were successfully cloned, expressed, purified and characterised. The most striking result was a protein of GH family 43 (GHF43), hereinafter designated as R_09-02, which had characteristics very distinct from the other proteins in this family with mono-functional β-xylosidase, α-xylanase, α-L-arabinase and α-L-arabinofuranosidase activities. R_09-02 is the first multifunctional enzyme to exhibit β-1,4 xylosidase, α-1,5 arabinofur(pyr)anosidase, β-1,4 lactase, α-1,6 raffinase, α-1,6 stachyase, β-galactosidase and α-1,4 glucosidase activities. The R_09-02 protein appears to originate from the chromosome of a member of Clostridia, a class of phylum Firmicutes, members of which are highly abundant in ruminal environment. The evolution of R_09-02 is suggested to be driven from the xylose- and arabinose-specific activities, typical for GHF43 members, toward a broader specificity to the glucose- and galactose-containing components of lignocellulose. The apparent capability of enzymes from the GHF43 family to utilise xylose-, arabinose-, glucose- and galactose-containing oligosaccharides has thus far been neglected by, or could not be predicted from, genome and metagenome sequencing data analyses. Taking into account the abundance of GHF43-encoding gene sequences in the rumen (up to 7% of all GH-genes) and the multifunctional phenotype herein described, our findings suggest that the ecological role of this GH family in the digestion of ligno-cellulosic matter should be significantly reconsidered.Citation
Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. 2012, 7 (6):e38134 PLoS ONEAffiliation
CSIC, Institute of Catalysis, Madrid, Spain. mferrer@icp.csic.esJournal
PloS onePubMed ID
22761666Type
ArticleLanguage
enISSN
1932-6203ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0038134
Scopus Count
The following license files are associated with this item:
Related articles
- Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D -xylosidase from rumen metagenome.
- Authors: Zhou J, Bao L, Chang L, Zhou Y, Lu H
- Issue date: 2012 Jan
- High genetic diversity and different distributions of glycosyl hydrolase family 10 and 11 xylanases in the goat rumen.
- Authors: Wang G, Luo H, Meng K, Wang Y, Huang H, Shi P, Pan X, Yang P, Diao Q, Zhang H, Yao B
- Issue date: 2011 Feb 3
- Metagenomic insights into the fibrolytic microbiome in yak rumen.
- Authors: Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z, Hu S, Li L, Xu J, Huang L, Dong X
- Issue date: 2012
- A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
- Authors: Limsakul P, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Ratanakhanokchai K
- Issue date: 2021 Nov 24
- Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome.
- Authors: Patel AB, Patel AK, Shah MP, Parikh IK, Joshi CG
- Issue date: 2016 Mar-Apr