Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Neumann, OlafKesselmeier, Miriam
Geffers, Robert
Pellegrino, Rossella
Radlwimmer, Bernhard
Hoffmann, Katrin
Ehemann, Volker
Schemmer, Peter
Schirmacher, Peter
Lorenzo Bermejo, Justo
Longerich, Thomas
Issue Date
2012-11
Metadata
Show full item recordAbstract
To identify new tumor-suppressor gene candidates relevant for human hepatocarcinogenesis, we performed genome-wide methylation profiling and vertical integration with array-based comparative genomic hybridization (aCGH), as well as expression data from a cohort of well-characterized human hepatocellular carcinomas (HCCs). Bisulfite-converted DNAs from 63 HCCs and 10 healthy control livers were analyzed for the methylation status of more than 14,000 genes. After defining the differentially methylated genes in HCCs, we integrated their DNA copy-number alterations as determined by aCGH data and correlated them with gene expression to identify genes potentially silenced by promoter hypermethylation. Aberrant methylation of candidates was further confirmed by pyrosequencing, and methylation dependency of silencing was determined by 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Methylation profiling revealed 2,226 CpG sites that showed methylation differences between healthy control livers and HCCs. Of these, 537 CpG sites were hypermethylated in the tumor DNA, whereas 1,689 sites showed promoter hypomethylation. The hypermethylated set was enriched for genes known to be inactivated by the polycomb repressive complex 2, whereas the group of hypomethylated genes was enriched for imprinted genes. We identified three genes matching all of our selection criteria for a tumor-suppressor gene (period homolog 3 [PER3], insulin-like growth-factor-binding protein, acid labile subunit [IGFALS], and protein Z). PER3 was down-regulated in human HCCs, compared to peritumorous and healthy liver tissues. 5-aza-dC treatment restored PER3 expression in HCC cell lines, indicating that promoter hypermethylation was indeed responsible for gene silencing. Additionally, functional analysis supported a tumor-suppressive function for PER3 and IGFALS in vitro. CONCLUSION: The present study illustrates that vertical integration of methylation data with high-resolution genomic and transcriptomic data facilitates the identification of new tumor-suppressor gene candidates in human HCC.Citation
Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. 2012, 56 (5):1817-27 HepatologyAffiliation
Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.Journal
Hepatology (Baltimore, Md.)PubMed ID
22689435Type
ArticleLanguage
enISSN
1527-3350ae974a485f413a2113503eed53cd6c53
10.1002/hep.25870
Scopus Count
The following license files are associated with this item:
Related articles
- Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma.
- Authors: Fukai K, Yokosuka O, Chiba T, Hirasawa Y, Tada M, Imazeki F, Kataoka H, Saisho H
- Issue date: 2003 Dec 15
- Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma.
- Authors: Wong CM, Ng YL, Lee JM, Wong CC, Cheung OF, Chan CY, Tung EK, Ching YP, Ng IO
- Issue date: 2007 May
- Epidermal growth factor-containing fibulin-like extracellular matrix protein 1, EFEMP1, a novel tumor-suppressor gene detected in hepatocellular carcinoma using double combination array analysis.
- Authors: Nomoto S, Kanda M, Okamura Y, Nishikawa Y, Qiyong L, Fujii T, Sugimoto H, Takeda S, Nakao A
- Issue date: 2010 Mar
- Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers.
- Authors: Yuan J, Luo RZ, Fujii S, Wang L, Hu W, Andreeff M, Pan Y, Kadota M, Oshimura M, Sahin AA, Issa JP, Bast RC Jr, Yu Y
- Issue date: 2003 Jul 15
- Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells.
- Authors: Zhang C, Li H, Zhou G, Zhang Q, Zhang T, Li J, Zhang J, Hou J, Liew CT, Yin D
- Issue date: 2007 Jun