Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2013
Metadata
Show full item recordAbstract
Aurachins are myxobacterial 3-farnesyl-4(1H)-quinolone derived compounds initially described as respiratory chain inhibitors, more specifically as inhibitors of various cytochrome complexes. They are also known as potent antibiotic compounds. We describe herein the first synthesis of aurachin D through a key Conrad-Limpach reaction. The same strategy was used to reach some ring as opposed to chain analogues, allowing for the description of structure-activity relationships. Biological screening of the analogues showed antiparasitic, cytotoxic, antibacterial and antifungal activities, and depletion of the mitochondrial membrane potential. The strongest activity was found on Plasmodium falciparum with a selectivity index of 345, compared to Vero cells, for the natural product and its geranyl analogue. The loss of mitochondrial membrane potential induced by aurachins in human U-2 OS osteosarcoma cells was studied, showing the best activity for aurachin D and a naphthalene analogue, yet without totally explaining the observed cytotoxic activity of the compounds. Finally, a synthetic entry is given to the complete carboheterocyclic core of aurachin H through the N-oxidation/epoxidation of aurachin D and a shorter chain analogue, followed by subsequent biomimetic cyclization.Citation
Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues. 2013, 9:1551-8 Beilstein J Org ChemAffiliation
Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes (UMR 7245 CNRS-MNHN), 57 rue Cuvier (CP 54), 75005 Paris, France.PubMed ID
23946854Type
ArticleLanguage
enISSN
1860-5397ae974a485f413a2113503eed53cd6c53
10.3762/bjoc.9.176
Scopus Count
The following license files are associated with this item: