Recent Submissions

  • Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation.

    Scheithauer, Lina; Thiem, Stefanie; Schmelz, Stefan; Dellmann, Ansgar; Büssow, Konrad; Brouwer, René M H J; Ünal, Can M; Blankenfeldt, Wulf; Steinert, Michael; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2021-01-24)
    ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness. This destruction of connective tissue fibres was further substantiated by collagen IV degradation assays. The moderate attenuation of a proA-negative mutant in A549 epithelial cells and THP-1 macrophages suggests that effects of ProA in tissue mainly result from extracellular activity. Correspondingly, ProA contributes to dissemination and serum resistance of the pathogen, which further expands the versatile substrate spectrum of this thermolysin-like protease. The crystal structure of ProA at 1.48 Å resolution showed high congruence to pseudolysin of Pseudomonas aeruginosa, but revealed deviations in flexible loops, the substrate binding pocket S1 ' and the repertoire of cofactors, by which ProA can be distinguished from respective homologues. In sum, this work specified virulence features of ProA at different organisational levels by zooming in from histopathological effects in human lung tissue to atomic details of the protease substrate determination.
  • Replicability, Repeatability, and Long-term Reproducibility of Cerebellar Morphometry.

    Sörös, Peter; Wölk, Louise; Bantel, Carsten; Bräuer, Anja; Klawonn, Frank; Witt, Karsten; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2021-01-09)
    To identify robust and reproducible methods of cerebellar morphometry that can be used in future large-scale structural MRI studies, we investigated the replicability, repeatability, and long-term reproducibility of three fully automated software tools: FreeSurfer, CEREbellum Segmentation (CERES), and automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization (ACAPULCO). Replicability was defined as computational replicability, determined by comparing two analyses of the same high-resolution MRI data set performed with identical analysis software and computer hardware. Repeatability was determined by comparing the analyses of two MRI scans of the same participant taken during two independent MRI sessions on the same day for the Kirby-21 study. Long-term reproducibility was assessed by analyzing two MRI scans of the same participant in the longitudinal OASIS-2 study. We determined percent difference, the image intraclass correlation coefficient, the coefficient of variation, and the intraclass correlation coefficient between two analyses. Our results show that CERES and ACAPULCO use stochastic algorithms that result in surprisingly high differences between identical analyses for ACAPULCO and small differences for CERES. Changes between two consecutive scans from the Kirby-21 study were less than ± 5% in most cases for FreeSurfer and CERES (i.e., demonstrating high repeatability). As expected, long-term reproducibility was lower than repeatability for all software tools. In summary, CERES is an accurate, as demonstrated before, and reproducible tool for fully automated segmentation and parcellation of the cerebellum. We conclude with recommendations for the assessment of replicability, repeatability, and long-term reproducibility in future studies on cerebellar structure.
  • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

    Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
    Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
  • Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif.

    Wang, Hui; Beier, Nicole; Boedeker, Christian; Sztajer, Helena; Henke, Petra; Neumann-Schaal, Meina; Mansky, Johannes; Rohde, Manfred; Overmann, Jörg; Petersen, Jörn; et al. (American Society for Microbiology, 2021-01-12)
    Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions.IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
  • PD-1 Blockade Aggravates Epstein-Barr Virus Post-Transplant Lymphoproliferative Disorder in Humanized Mice Resulting in Central Nervous System Involvement and CD4 T Cell Dysregulations.

    Volk, Valery; Theobald, Sebastian J; Danisch, Simon; Khailaie, Sahamoddin; Kalbarczyk, Maja; Schneider, Andreas; Bialek-Waldmann, Julia; Krönke, Nicole; Deng, Yun; Eiz-Vesper, Britta; et al. (Frontiers, 2021-01-12)
    Post-transplant lymphoproliferative disorder (PTLD) is one of the most common malignancies after solid organ or allogeneic stem cell transplantation. Most PTLD cases are B cell neoplasias carrying Epstein-Barr virus (EBV). A therapeutic approach is reduction of immunosuppression to allow T cells to develop and combat EBV. If this is not effective, approaches include immunotherapies such as monoclonal antibodies targeting CD20 and adoptive T cells. Immune checkpoint inhibition (ICI) to treat EBV+ PTLD was not established clinically due to the risks of organ rejection and graft-versus-host disease. Previously, blockade of the programmed death receptor (PD)-1 by a monoclonal antibody (mAb) during ex vivo infection of mononuclear cells with the EBV/M81+ strain showed lower xenografted lymphoma development in mice. Subsequently, fully humanized mice infected with the EBV/B95-8 strain and treated in vivo with a PD-1 blocking mAb showed aggravation of PTLD and lymphoma development. Here, we evaluated vis-a-vis in fully humanized mice after EBV/B95-8 or EBV/M81 infections the effects of a clinically used PD-1 blocker. Fifteen to 17 weeks after human CD34+ stem cell transplantation, Nod.Rag.Gamma mice were infected with two types of EBV laboratory strains expressing firefly luciferase. Dynamic optical imaging analyses showed systemic EBV infections and this triggered vigorous human CD8+ T cell expansion. Pembrolizumab administered from 2 to 5 weeks post-infections significantly aggravated EBV systemic spread and, for the M81 model, significantly increased the mortality of mice. ICI promoted Ki67+CD30+CD20+EBER+PD-L1+ PTLD with central nervous system (CNS) involvement, mirroring EBV+ CNS PTLD in humans. PD-1 blockade was associated with lower frequencies of circulating T cells in blood and with a profound collapse of CD4+ T cells in lymphatic tissues. Mice treated with pembrolizumab showed an escalation of exhausted T cells expressing TIM-3, and LAG-3 in tissues, higher levels of several human cytokines in plasma and high densities of FoxP3+ regulatory CD4+ and CD8+ T cells in the tumor microenvironment. We conclude that PD-1 blockade during acute EBV infections driving strong CD8+ T cell priming decompensates T cell development towards immunosuppression. Given the variety of preclinical models available, our models conferred a cautionary note indicating that PD-1 blockade aggravated the progression of EBV+ PTLD.
  • Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls.

    Wiesselmann, Milan; Hebecker, Stefanie; Borrero-de Acuña, José M; NIMTZ, MANFRED; Bollivar, David; Jänsch, Lothar; Moser, Jürgen; Jahn, Dieter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Portland Press, 2020-11-19)
    During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.
  • Baculovirus-free insect cell expression system for high yield antibody and antigen production.

    Korn, Janin; Schäckermann, Dorina; Kirmann, Toni; Bertoglio, Federico; Steinke, Stephan; Heisig, Janyn; Ruschig, Maximilian; Rojas, Gertrudis; Langreder, Nora; Wenzel, Esther Veronika; et al. (Nature research, 2020-12-07)
    Mammalian cells are the most commonly used production system for therapeutic antibodies. Protocols for the expression of recombinant antibodies in HEK293-6E cells in different antibody formats are described in detail. As model, antibodies against Kallikrein-related peptidase 7 (KLK7) were used. KLK7 is a key player in skin homeostasis and represents an emerging target for pharmacological interventions. Potent inhibitors can not only help to elucidate physiological and pathophysiological functions but also serve as a new archetype for the treatment of inflammatory skin disorders. Phage display-derived affinity-matured human anti-KLK7 antibodies were converted to scFv-Fc, IgG, and Fab formats and transiently produced in the mammalian HEK293-6E system. For the production of the corresponding antigen-KLK7-the baculovirus expression vector system (BEVS) and virus-free expression in Hi5 insect cells were used in a comparative approach. The target proteins were isolated by various chromatographic methods in a one- or multistep purification strategy. Ultimately, the interaction between anti-KLK7 and KLK7 was characterized using biolayer interferometry. Here, protocols for the expression of recombinant antibodies in different formats are presented and compared for their specific features. Furthermore, biolayer interferometry (BLI), a fast and high-throughput biophysical analytical technique to evaluate the kinetic binding constant and affinity constant of the different anti-KLK7 antibody formats against Kallikrein-related peptidase 7 is presented.
  • Pain drawings as a diagnostic tool for the differentiation between two pain-associated rare diseases (Ehlers-Danlos-Syndrome, Guillain-Barré-Syndrome).

    Wester, Larissa; Mücke, Martin; Bender, Tim Theodor Albert; Sellin, Julia; Klawonn, Frank; Conrad, Rupert; Szczypien, Natasza; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC, 2020-11-17)
    Background: The diagnosis of rare diseases poses a particular challenge to clinicians. This study analyzes whether patients' pain drawings (PDs) help in the differentiation of two pain-associated rare diseases, Ehlers-Danlos Syndrome (EDS) and Guillain-Barré Syndrome (GBS). Method: The study was designed as a prospective, observational, single-center study. The sample comprised 60 patients with EDS (3 male, 52 female, 5 without gender information; 39.2 ± 11.4 years) and 32 patients with GBS (10 male, 20 female, 2 without gender information; 50.5 ± 13.7 years). Patients marked areas afflicted by pain on a sketch of a human body with anterior, posterior, and lateral views. PDs were electronically scanned and processed. Each PD was classified based on the Ružička similarity to the EDS and the GBS averaged image (pain profile) in a leave-one-out cross validation approach. A receiver operating characteristic (ROC) curve was plotted. Results: 60-80% of EDS patients marked the vertebral column with the neck and the tailbone and the knee joints as pain areas, 40-50% the shoulder-region, the elbows and the thumb saddle joint. 60-70% of GBS patients marked the dorsal and plantar side of the feet as pain areas, 40-50% the palmar side of the fingertips, the dorsal side of the left palm and the tailbone. 86% of the EDS patients and 96% of the GBS patients were correctly identified by computing the Ružička similarity. The ROC curve yielded an excellent area under the curve value of 0.95.
  • Effect of a strict hygiene bundle for the prevention of nosocomial transmission of SARS-CoV-2 in the hospital: a practical approach from the field.

    Ambrosch, Andreas; Rockmann, Felix; Klawonn, Frank; Lampl, Benedikt; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-10-20)
    Background: During the novel coronavirus disease (COVID-19) pandemic it is crucial for hospitals to implement infection prevention strategies to reduce nosocomial transmission to the lowest possible number. This is all the more important because molecular tests for identifying SARS-CoV-2 infected patients are uncertain, and the resources available for them are limited. In this view, a monocentric, retrospective study with an interventional character was conducted to investigate the extent to which the introduction of a strict hygiene bundle including a general mask requirement and daily screening for suspicious patients has an impact on the SARS-CoV-2 nosocomial rate in the pandemic environment. Methods: All inpatients from a maximum care hospital in Regensburg (Bavaria) between March 1st and June 10th 2020 were included. Patient with respiratory symptoms were tested for SARS-CoV-2 at admission, patients were managed according to a standard hygiene protocol. At the end of March a strict hygiene bundle was introduced including a general mask obligation and a daily clinical screening of inpatients for respiratory symptoms. Nosocomial infection rate for COVID-19 and the risk for infection transmission estimated by the nosocomial incidence density before and after introduction the hygiene bundle were compared. The infection pressure for the hospital during the entire observational period was characterized by the infection reports in the region in relation to the number of hospitalized COVID-19 patients and the number of infected employees. Results: In fact, after the introduction of a strict hygiene bundle including a general mouth and nose protection obligation and a daily clinical screening of suspicious patients, a significant reduction of the nosocomial rate from 0.28 to 0.06 (p = 0.026) was observed. Furthermore, the risk of spreading hospital-acquired infections also decreased dramatically from 0.0007 to 0.00018 (p = 0.031; rate ratio after/before 0.25 (95%CI 0.06, 1.07) despite a slow decrease of the hospital COVID 19-prevalence and an increase of infected employees. Conclusion: The available data underline that a strict hygiene bundle seem to be associated with a decrease of nosocomial SARS-CoV-2 transmission in the pandemic situation.
  • Sample size and performance estimation for biomarker combinations based on pilot studies with small sample sizes”

    Al-Mekhlafi, Amani; Becker, Tobias; Klawonn, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2020-01-01)
    High throughput technologies like microarrays, next generation sequencing and mass spectrometry enable the measurement of tens of thousands of biomarker candidates in pilot studies. Biological systems are often too complex to be based on simple single cause-effect associations and from the medical practice point of view, a single biomarker may not possess the desired sensitivity and/or specificity for disease classification and outcome prediction. Therefore, the efforts of researchers currently aims at combining biomarkers. The intention of biomarker pilot studies with small sample sizes is often to explore the possibility of finding good biomarker combinations and not to find and evaluate a final combination of biomarkers with high predictive value. The aim of the pilot study is to answer the question whether it is worthwhile to extend the study to a larger study and to obtain information about the required sample size. In this paper, we propose a method to judge the potential in a small biomarker pilot study without the need to explicitly identifying and confirming a specific subset of biomarkers. In addition, we provide a method for sample size estimation for an extended study when the results of the pilot study look promising.
  • A publicly accessible database for genome sequences supports tracing of transmission chains and epidemics.

    Frentrup, Martinique; Zhou, Zhemin; Steglich, Matthias; Meier-Kolthoff, Jan P; Göker, Markus; Riedel, Thomas; Bunk, Boyke; Spröer, Cathrin; Overmann, Jörg; Blaschitz, Marion; et al. (Microbiology Society, 2020-07-29)
    Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10-4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.
  • CYP154C5 Regioselectivity in Steroid Hydroxylation Explored by Substrate Modifications and Protein Engineering.

    Bracco, Paula; Wijma, Hein J; Nicolai, Bastian; Rodriguez Buitrago, Jhon Alexander; Klünemann, Thomas; Vila, Agustina; Schrepfer, Patrick; Blankenfeldt, Wulf; Janssen, Dick B; Schallmey, Anett; et al. (Wiley, 2020-11-04)
    CYP154C5 from Nocardia farcinica is a P450 monooxygenase able to hydroxylate a range of steroids with high regio- and stereoselectivity at the 16a-position. Using protein engineering and substrate modifications based on the crystal structure of CYP154C5, an altered regioselectivity of the enzyme in steroid hydroxylation had been achieved. Thus, conversion of progesterone by mutant CYP154C5 F92A resulted in formation of the corresponding 21-hydroxylated product 11-deoxycorticosterone in addition to 16α-hydroxylation. Using MD simulation, this altered regioselectivity appeared to result from an alternate binding mode of the steroid in the active site of mutant F92A. MD simulation further suggested that water entrance to the active site caused higher uncoupling in this mutant. Moreover, exclusive 15α-hydroxylation was observed for wild-type CYP154C5 in the conversion of 5a-androstan-3-one, lacking an oxy-functional group at C17. Overall, our data give valuable insight into the structure-function relationship of this cytochrome P450 monooxygenase for steroid hydroxylation.
  • Expression, purification and crystal structure determination of a ferredoxin reductase from the actinobacterium Thermobifida fusca.

    Rodriguez Buitrago, Jhon Alexander; Klünemann, Thomas; Blankenfeldt, Wulf; Schallmey, Anett; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley & Sons, 2020-07-28)
    he ferredoxin reductase FdR9 from Thermobifida fusca, a member of the oxygenase-coupled NADH-dependent ferredoxin reductase (FNR) family, catalyses electron transfer from NADH to its physiological electron acceptor ferredoxin. It forms part of a putative three-component cytochrome P450 monooxygenase system in T. fusca comprising CYP222A1 and the [3Fe-4S]-cluster ferredoxin Fdx8 as well as FdR9. Here, FdR9 was overexpressed and purified and its crystal structure was determined at 1.9 Å resolution. The overall structure of FdR9 is similar to those of other members of the FNR family and is composed of an FAD-binding domain, an NAD-binding domain and a C-terminal domain. Activity measurements with FdR9 confirmed a strong preference for NADH as the cofactor. Comparison of the FAD- and NAD-binding domains of FdR9 with those of other ferredoxin reductases revealed the presence of conserved sequence motifs in the FAD-binding domain as well as several highly conserved residues involved in FAD and NAD cofactor binding. Moreover, the NAD-binding site of FdR9 contains a modified Rossmann-fold motif, GxSxxS, instead of the classical GxGxxG motif.
  • Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high: In vivo efficacy

    Testolin, Giambattista; Cirnski, Katarina; Rox, Katharina; Prochnow, Hans; Fetz, Verena; Grandclaudon, Charlotte; Mollner, Tim; Baiyoumy, Alain; Ritter, Antje; Leitner, Christian; et al. (RSC, 2020-01-01)
    There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 μg mL−1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 μg mL−1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.
  • Protein-Templated Hit Identification through an Ugi Four-Component Reaction.

    Mancini, Federica; Unver, M Yagiz; Elgaher, Walid A M; Jumde, Varsha R; Alhayek, Alaa; Lukat, Peer; Herrmann, Jennifer; Witte, Martin D; Köck, Matthias; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2020-05-19)
  • Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV.

    Theobald, Sebastian J; Kreer, Christoph; Khailaie, Sahamoddin; Bonifacius, Agnes; Eiz-Vesper, Britta; Figueiredo, Constanca; Mach, Michael; Backovic, Marija; Ballmaier, Matthias; Koenig, Johannes; et al. (2020-07-15)
    Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation.
  • Pyruvate dehydrogenase complex—enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies

    Moreira, Gustavo Marçal Schmidt Garcia; Köllner, Sarah Mara Stella; Helmsing, Saskia; Jänsch, Lothar; Meier, Anja; Gronow, Sabine; Boedeker, Christian; Dübel, Stefan; Mendonça, Marcelo; Moreira, Ângela Nunes; et al. (Springer Science and Business Media LLC, 2020-09-17)
    The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex-enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS). Immunoblot and fluorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35-100.0%) and specificity (CI 78.20-100.0%), confirming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specific antibodies against it offer new opportunities to improve the detection of Listeria.
  • Development of a Social Network for People Without a Diagnosis (RarePairs): Evaluation Study.

    Kühnle, Lara; Mücke, Urs; Lechner, Werner M; Klawonn, Frank; Grigull, Lorenz; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (JMIR publications, 2020-09-29)
    Background: Diagnostic delay in rare disease (RD) is common, occasionally lasting up to more than 20 years. In attempting to reduce it, diagnostic support tools have been studied extensively. However, social platforms have not yet been used for systematic diagnostic support. This paper illustrates the development and prototypic application of a social network using scientifically developed questions to match individuals without a diagnosis. Objective: The study aimed to outline, create, and evaluate a prototype tool (a social network platform named RarePairs), helping patients with undiagnosed RDs to find individuals with similar symptoms. The prototype includes a matching algorithm, bringing together individuals with similar disease burden in the lead-up to diagnosis. Methods: We divided our project into 4 phases. In phase 1, we used known data and findings in the literature to understand and specify the context of use. In phase 2, we specified the user requirements. In phase 3, we designed a prototype based on the results of phases 1 and 2, as well as incorporating a state-of-the-art questionnaire with 53 items for recognizing an RD. Lastly, we evaluated this prototype with a data set of 973 questionnaires from individuals suffering from different RDs using 24 distance calculating methods. Results: Based on a step-by-step construction process, the digital patient platform prototype, RarePairs, was developed. In order to match individuals with similar experiences, it uses answer patterns generated by a specifically designed questionnaire (Q53). A total of 973 questionnaires answered by patients with RDs were used to construct and test an artificial intelligence (AI) algorithm like the k-nearest neighbor search. With this, we found matches for every single one of the 973 records. The cross-validation of those matches showed that the algorithm outperforms random matching significantly. Statistically, for every data set the algorithm found at least one other record (match) with the same diagnosis. Conclusions: Diagnostic delay is torturous for patients without a diagnosis. Shortening the delay is important for both doctors and patients. Diagnostic support using AI can be promoted differently. The prototype of the social media platform RarePairs might be a low-threshold patient platform, and proved suitable to match and connect different individuals with comparable symptoms. This exchange promoted through RarePairs might be used to speed up the diagnostic process. Further studies include its evaluation in a prospective setting and implementation of RarePairs as a mobile phone app.
  • Gastrointestinal stress as innate defence against microbial attack.

    Panwar, H; Rokana, N; Aparna, S V; Kaur, J; Singh, A; Singh, J; Singh, K S; Chaudhary, V; Puniya, A K; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-08-31)
    A comparison of the metabolic response of Escherichia coli BL21 (DE3) towards the production of human basic fibroblast growth factor (hFGF-2) or towards carbon overfeeding revealed similarities which point to constraints in anabolic pathways. Contrary to expectations, neither energy generation (e.g., ATP) nor provision of precursor molecules for nucleotides (e.g., uracil) and amino acids (e.g., pyruvate, glutamate) limit host cell and plasmid-encoded functions. Growth inhibition is assumed to occur when hampered anabolic capacities do not match with the ongoing and overwhelming carbon catabolism. Excessive carbon uptake leads to by-product secretion, for example, pyruvate, acetate, glutamate, and energy spillage, for example, accumulation and degradation of adenine nucleotides with concomitant accumulation of extracellular hypoxanthine. The cellular response towards compromised anabolic capacities involves downregulation of cAMP formation, presumably responsible for subsequently better-controlled glucose uptake and resultant accumulation of glucose in the culture medium. Growth inhibition is neglectable under conditions of reduced carbon availability when hampered anabolic capacities also match with catabolic carbon processing. The growth inhibitory effect with accompanying energy spillage, respectively, hypoxanthine secretion and cessation of cAMP formation is not unique to the production of hFGF-2 but observed during the production of other proteins and also during overexpression of genes without transcript translation.
  • Hepatic Transcriptome Analysis Identifies Divergent Pathogen-Specific Targeting-Strategies to Modulate the Innate Immune System in Response to Intramammary Infection.

    Heimes, Annika; Brodhagen, Johanna; Weikard, Rosemarie; Seyfert, Hans-Martin; Becker, Doreen; Meyerholz, Marie M; Petzl, Wolfram; Zerbe, Holm; Hoedemaker, Martina; Rohmeier, Laura; et al. (Frontiers, 2020-04-29)
    Mastitis is one of the major risks for public health and animal welfare in the dairy industry. Two of the most important pathogens to cause mastitis in dairy cattle are Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). While S. aureus generally induces a chronic and subclinical mastitis, E. coli is an important etiological pathogen resulting in an acute and clinical mastitis. The liver plays a central role in both, the metabolic and inflammatory physiology of the dairy cow, which is particularly challenged in the early lactation due to high metabolic and immunological demands. In the current study, we challenged the mammary glands of Holstein cows with S. aureus or E. coli, respectively, mimicking an early lactation infection. We compared the animals' liver transcriptomes with those of untreated controls to investigate the hepatic response of the individuals. Both, S. aureus and E. coli elicited systemic effects on the host after intramammary challenge and seemed to use pathogen-specific targeting strategies to bypass the innate immune system. The most striking result of our study is that we demonstrate for the first time that S. aureus intramammary challenge causes an immune response beyond the original local site of the mastitis. We found that in the peripheral liver tissue defined biological pathways are switched on in a coordinated manner to balance the immune response in the entire organism. TGFB1 signaling plays a crucial role in this context. Important pathways involving actin and integrin, key components of the cytoskeleton, were downregulated in the liver of S. aureus infected cows. In the hepatic transcriptome of E. coli infected cows, important components of the complement system were significantly lower expressed compared to the control cows. Notably, while S. aureus inhibits the cell signaling by Rho GTPases in the liver, E. coli switches the complement system off. Also, metabolic hepatic pathways (e.g., lipid metabolism) are affected after mammary gland challenge, demonstrating that the liver restricts metabolic tasks in favor of the predominant immune response after infection. Our results provide new insights for the infection-induced modifications of the dairy cow's hepatic transcriptome following mastitis.

View more