Recent Submissions

  • Structure of a Protein-RNA Complex by Solid-State NMR Spectroscopy.

    Ahmed, Mumdooh; Marchanka, Alexander; Carlomagno, Teresa; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-02-05)
    Solid-state NMR (ssNMR) is applicable to high molecular-weight (MW) protein assemblies in a non-amorphous precipitate. The technique yields atomic resolution structural information on both soluble and insoluble particles without limitations of MW or requirement of crystals. Herein, we propose and demonstrate an approach that yields the structure of protein-RNA complexes (RNP) solely from ssNMR data. Instead of using low-sensitivity magnetization transfer steps between heteronuclei of the protein and the RNA, we measure paramagnetic relaxation enhancement effects elicited on the RNA by a paramagnetic tag coupled to the protein. We demonstrate that this data, together with chemical-shift-perturbation data, yields an accurate structure of an RNP complex, starting from the bound structures of its components. The possibility of characterizing protein-RNA interactions by ssNMR may enable applications to large RNP complexes, whose structures are not accessible by other methods.
  • Molecular mechanism of SHP2 activation by PD-1 stimulation.

    Marasco, M; Berteotti, A; Weyershaeuser, J; Thorausch, N; Sikorska, J; Krausze, J; Brandt, H J; Kirkpatrick, J; Rios, P; Schamel, W W; et al. (American Association for the Advancement of Science, 2020-01-01)
    In cancer, the programmed death-1 (PD-1) pathway suppresses T cell stimulation and mediates immune escape. Upon stimulation, PD-1 becomes phosphorylated at its immune receptor tyrosine-based inhibitory motif (ITIM) and immune receptor tyrosine-based switch motif (ITSM), which then bind the Src homology 2 (SH2) domains of SH2-containing phosphatase 2 (SHP2), initiating T cell inactivation. The SHP2-PD-1 complex structure and the exact functions of the two SH2 domains and phosphorylated motifs remain unknown. Here, we explain the structural basis and provide functional evidence for the mechanism of PD-1-mediated SHP2 activation. We demonstrate that full activation is obtained only upon phosphorylation of both ITIM and ITSM: ITSM binds C-SH2 with strong affinity, recruiting SHP2 to PD-1, while ITIM binds N-SH2, displacing it from the catalytic pocket and activating SHP2. This binding event requires the formation of a new inter-domain interface, offering opportunities for the development of novel immunotherapeutic approaches.
  • ADAP Promotes Degranulation and Migration of NK Cells Primed During Infection in Mice.

    Böning, Martha A L; Trittel, Stephanie; Riese, Peggy; van Ham, Marco; Heyner, Maxi; Voss, Martin; Parzmair, Gerald P; Klawonn, Frank; Jeron, Andreas; Guzman, Carlos A; et al. (Frontiers, 2019-01-01)
    The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
  • Small-Angle Neutron Scattering of RNA-Protein Complexes.

    Lapinaite, Audrone; Carlomagno, Teresa; Gabel, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-01-01)
    Small-angle neutron scattering (SANS) provides structural information on biomacromolecules and their complexes in dilute solutions at the nanometer length scale. The overall dimensions, shapes, and interactions can be probed and compared to information obtained by complementary structural biology techniques such as crystallography, NMR, and EM. SANS, in combination with solvent H2O/D2O exchange and/or deuteration, is particularly well suited to probe the internal structure of RNA-protein (RNP) complexes since neutrons are more sensitive than X-rays to the difference in scattering length densities of proteins and RNA, with respect to an aqueous solvent. In this book chapter we provide a practical guide on how to carry out SANS experiments on RNP complexes, as well as possibilities of data analysis and interpretation.
  • Molecular Mechanisms of Vaspin Action - From Adipose Tissue to Skin and Bone, from Blood Vessels to the Brain.

    Weiner, Juliane; Zieger, Konstanze; Pippel, Jan; Heiker, John T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-01-01)
    Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that were specifically expressed or overexpressed in the intra-abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and -glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes.The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain.
  • In vivo model to study the impact of genetic variation on clinical outcome of mastitis in uniparous dairy cows.

    Rohmeier, L; Petzl, W; Koy, M; Eickhoff, T; Hülsebusch, A; Jander, S; Macias, L; Heimes, A; Engelmann, S; Hoedemaker, M; et al. (BioMed Central (BMC), 2020-01-31)
    BACKGROUND: In dairy herds, mastitis causes detrimental economic losses. Genetic selection offers a sustainable tool to select animals with reduced susceptibility towards postpartum diseases. Studying underlying mechanisms is important to assess the physiological processes that cause differences between selected haplotypes. Therefore, the objective of this study was to establish an in vivo infection model to study the impact of selecting for alternative paternal haplotypes in a particular genomic region on cattle chromosome 18 for mastitis susceptibility under defined conditions in uniparous dairy cows. RESULTS: At the start of pathogen challenge, no significant differences between the favorable (Q) and unfavorable (q) haplotypes were detected. Intramammary infection (IMI) with Staphylococcus aureus 1027 (S. aureus, n = 24, 96 h) or Escherichia coli 1303 (E. coli, n = 12, 24 h) was successfully induced in all uniparous cows. This finding was confirmed by clinical signs of mastitis and repeated recovery of the respective pathogen from milk samples of challenged quarters in each animal. After S. aureus challenge, Q-uniparous cows showed lower somatic cell counts 24 h and 36 h after challenge (P < 0.05), lower bacterial shedding in milk 12 h after challenge (P < 0.01) and a minor decrease in total milk yield 12 h and 24 h after challenge (P < 0.01) compared to q-uniparous cows. CONCLUSION: An in vivo infection model to study the impact of genetic selection for mastitis susceptibility under defined conditions in uniparous dairy cows was successfully established and revealed significant differences between the two genetically selected haplotype groups. This result might explain their differences in susceptibility towards IMI. These clinical findings form the basis for further in-depth molecular analysis to clarify the underlying genetic mechanisms for mastitis resistance.
  • The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to Structural Flexibility of the FabH-like 2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) Biosynthesis Enzyme PqsBC.

    Witzgall, Florian; Depke, Tobias; Hoffmann, Michael; Empting, Martin; Brönstrup, Mark; Müller, Rolf; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-VCH, 2018-07-16)
    Pseudomonas aeruginosa is a bacterial pathogen that causes life-threatening infections in immunocompromised patients. It produces a large armory of saturated and mono-unsaturated 2-alkyl-4(1H)-quinolones (AQs) and AQ N-oxides (AQNOs) that serve as signaling molecules to control the production of virulence factors and that are involved in membrane vesicle formation and iron chelation; furthermore, they also have, for example, antibiotic properties. It has been shown that the β-ketoacyl-acyl-carrier protein synthase III (FabH)-like heterodimeric enzyme PqsBC catalyzes the last step in the biosynthesis of the most abundant AQ congener, 2-heptyl-4(1H)-quinolone (HHQ), by condensing octanoyl-coenzyme A (CoA) with 2-aminobenzoylacetate (2-ABA), but the basis for the large number of other AQs/AQNOs produced by P. aeruginosa is not known. Here, we demonstrate that PqsBC uses different medium-chain acyl-CoAs to produce various saturated AQs/AQNOs and that it also biosynthesizes mono-unsaturated congeners. Further, we determined the structures of PqsBC in four different crystal forms at 1.5 to 2.7 Å resolution. Together with a previous report, the data reveal that PqsBC adopts open, intermediate, and closed conformations that alter the shape of the acyl-binding cavity and explain the promiscuity of PqsBC. The different conformations also allow us to propose a model for structural transitions that accompany the catalytic cycle of PqsBC that might have broader implications for other FabH-enzymes, for which such structural transitions have been postulated but have never been observed.
  • Insights into the Cnx1E catalyzed MPT-AMP hydrolysis.

    Hercher, Thomas W; Krausze, Joern; Hoffmeister, Sven; Zwerschke, Dagmar; Lindel, Thomas; Blankenfeldt, Wulf; Mendel, Ralf R; Kruse, Tobias; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Portland Press, 2020-01-31)
    Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.
  • The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates.

    Klahn, Philipp; Fetz, Verena; Ritter, Antje; Collisi, Wera; Hinkelmann, Bettina; Arnold, Tatjana; Tegge, Werner; Rox, Katharina; Hüttel, Stephan; Mohr, Kathrin I; et al. (Royal Society of Chemistry, 2019-05-28)
    The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.
  • Flexible Fragment Growing Boosts Potency of Quorum Sensing Inhibitors against Pseudomonas aeruginosa Virulence.

    Zender, Michael; Witzgall, Florian; Kiefer, Alexander Felix; Kirsch, Benjamin; Maurer, Christine K; Kany, Andreas M; Xu, Ningna; Schmelz, Stefan; Börger, Carsten; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2019-11-11)
    Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-amino pyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa . We pursue an innovative treatment strategy by interfering with the Pseudomonas Quinolone Signal (PQS) Quorum Sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
  • Common pre-diagnostic features in individuals with different rare diseases represent a key for diagnostic support with computerized pattern recognition?

    Grigull, Lorenz; Mehmecke, Sandra; Rother, Ann-Katrin; Blöß, Susanne; Klemann, Christian; Schumacher, Ulrike; Mücke, Urs; Kortum, Xiaowei; Lechner, Werner; Klawonn, Frank; et al. (Public Library of Science (PLoS), 2019-10-10)
    BACKGROUND: Rare diseases (RD) result in a wide variety of clinical presentations, and this creates a significant diagnostic challenge for health care professionals. We hypothesized that there exist a set of consistent and shared phenomena among all individuals affected by (different) RD during the time before diagnosis is established. OBJECTIVE: We aimed to identify commonalities between different RD and developed a machine learning diagnostic support tool for RD. METHODS: 20 interviews with affected individuals with different RD, focusing on the time period before their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic experiences, we distilled key phenomena and created a questionnaire which was then distributed among individuals with the established diagnosis of i.) RD, ii.) other common non-rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somatoform disorders (PSY). Finally, four combined single machine learning methods and a fusion algorithm were used to distinguish the different answer patterns of the questionnaires. RESULTS: The questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149 CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were collected. Based on 3 independent data sets the 10-fold stratified cross-validation method for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY. CONCLUSION: Despite the great diversity in presentation and pathogenesis of each RD, patients with RD share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining based approach successfully detected unique patterns in groups of individuals affected by a broad range of different rare diseases. Therefore, these results indicate distinct patterns that may be used for diagnostic support in RD.
  • Genetic selection for bovine chromosome 18 haplotypes associated with divergent somatic cell score affects postpartum reproductive and metabolic performance.

    Meyerholz, M M; Rohmeier, L; Eickhoff, T; Hülsebusch, A; Jander, S; Linden, M; Macias, L; Koy, M; Heimes, A; Gorríz-Martín, L; et al. (Elsevier, 2019-11-01)
    The susceptibility of animals to periparturient diseases has a great effect on the economic efficiency of dairy industries, on the frequency of antibiotic treatment, and on animal welfare. The use of selection for breeding cows with reduced susceptibility to diseases offers a sustainable tool to improve dairy cattle farming. Several studies have focused on the association of distinct bovine chromosome 18 genotypes or haplotypes with performance traits. The aim of this study was to test whether selection of Holstein Friesian heifers via SNP genotyping for alternative paternal chromosome 18 haplotypes associated with favorable (Q) or unfavorable (q) somatic cell scores influences postpartum reproductive and metabolic diseases. Thirty-six heifers (18 Q and 18 q) were monitored from 3 wk before calving until necropsy on d 39 (± 4 d) after calving. Health status and rectal temperature were measured daily, and body condition score and body weight were assessed once per week. Blood samples were drawn twice weekly, and levels of insulin, nonesterified fatty acids, insulin-like growth factor-I, growth hormone, and β-hydroxybutyrate were measured. Comparisons between the groups were performed using Fisher's exact test, chi-squared test, and the GLIMMIX procedure in SAS. Results showed that Q-heifers had reduced incidence of metritis compared with q-heifers and were less likely to develop fever. Serum concentrations of β-hydroxybutyrate were lower and insulin-like growth factor-I plasma concentrations were higher in Q- compared with q-heifers. However, the body condition score and withers height were comparable between haplotypes, but weight loss tended to be lower in Q-heifers compared with q-heifers. No differences between the groups were detected concerning retained fetal membranes, uterine involution, or onset of cyclicity. In conclusion, selection of chromosome 18 haplotypes associated with a reduced somatic cell score resulted in a decreased incidence of postpartum reproductive and metabolic diseases in this study. The presented data add to the existing knowledge aimed at avoiding negative consequences of genetic selection strategies in dairy cattle farming. The underlying causal mechanisms modulated by haplotypes in the targeted genomic region and immune competence necessitate further investigation.
  • Crystal structure of -aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis.

    Chen, Fangfang; Lukat, Peer; Iqbal, Azeem Ahmed; Saile, Kyrill; Kaever, Volkhard; van den Heuvel, Joop; Blankenfeldt, Wulf; Büssow, Konrad; Pessler, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (National Academy of Sciences, 2019-09-23)
    cis-Aconitate decarboxylase (CAD, also known as ACOD1 or Irg1) converts cis-aconitate to itaconate and plays central roles in linking innate immunity with metabolism and in the biotechnological production of itaconic acid by Aspergillus terreus We have elucidated the crystal structures of human and murine CADs and compared their enzymological properties to CAD from A. terreus Recombinant CAD is fully active in vitro without a cofactor. Murine CAD has the highest catalytic activity, whereas Aspergillus CAD is best adapted to a more acidic pH. CAD is not homologous to any known decarboxylase and appears to have evolved from prokaryotic enzymes that bind negatively charged substrates. CADs are homodimers, the active center is located in the interface between 2 distinct subdomains, and structural modeling revealed conservation in zebrafish and Aspergillus We identified 8 active-site residues critical for CAD function and rare naturally occurring human mutations in the active site that abolished CAD activity, as well as a variant (Asn152Ser) that increased CAD activity and is common (allele frequency 20%) in African ethnicity. These results open the way for 1) assessing the potential impact of human CAD variants on disease risk at the population level, 2) developing therapeutic interventions to modify CAD activity, and 3) improving CAD efficiency for biotechnological production of itaconic acid.
  • The N‐terminal peptide of the transglutaminase‐activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross‐linking sites

    Juettner, Norbert E.; Schmelz, Stefan; Anderl, Anita; Colin, Felix; Classen, Moritz; Pfeifer, Felicitas; Scrima, Andrea; Fuchsbauer, Hans‐Lothar; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2019-08-29)
    Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (
  • Histone chaperone exploits intrinsic disorder to switch acetylation specificity

    Danilenko, Nataliya; Lercher, Lukas; Kirkpatrick, John; Gabel, Frank; Codutti, Luca; Carlomagno, Teresa; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany (Springer Science and Business Media LLC, 2019-08-06)
    Histones, the principal protein components of chromatin, contain long disordered sequences, which are extensively post-translationally modified. Although histone chaperones are known to control both the activity and specificity of histone-modifying enzymes, the mechanisms promoting modification of highly disordered substrates, such as lysine-acetylation within the N-terminal tail of histone H3, are not understood. Here, to understand how histone chaperones Asf1 and Vps75 together promote H3 K9-acetylation, we establish the solution structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4. We show that Vps75 promotes K9-acetylation by engaging the H3 N-terminal tail in fuzzy electrostatic interactions with its disordered C-terminal domain, thereby confining the H3 tail to a wide central cavity faced by the Rtt109 active site. These fuzzy interactions between disordered domains achieve localization of lysine residues in the H3 tail to the catalytic site with minimal loss of entropy, and may represent a common mechanism of enzymatic reactions involving highly disordered substrates.
  • Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

    Böldicke, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-Blackwell, 2017-01-01)
    Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant‐ and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell‐penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell‐specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb‐DNA or –protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic. Keywords: intrabodies, single domain antibodies, scFv fragment, cytosolic/nuclear intrabodies, camelid VHHs, shark vNARs, human VH, human VL
  • Characterization of functional traits with focus on udder health in heifers with divergent paternally inherited haplotypes on BTA18.

    Heimes, A; Brodhagen, J; Weikard, R; Hammon, H M; Meyerholz, M M; Petzl, W; Zerbe, H; Engelmann, S; Schmicke, M; Hoedemaker, M; et al. (BioMedCentral, 2019-07-11)
    BACKGROUND: A major challenge in modern medicine and animal husbandry is the issue of antimicrobial resistance. One approach to solving this potential medical hazard is the selection of farm animals with less susceptibility to infectious diseases. Recent advances in functional genome analysis and quantitative genetics have opened the horizon to apply genetic marker information for efficiently identifying animals with preferential predisposition regarding health traits. The current study characterizes functional traits with a focus on udder health in dairy heifers. The animals were selected for having inherited alternative paternal haplotypes for a genomic region on Bos taurus chromosome (BTA) 18 genetically associated with divergent susceptibility to longevity and animal health, particularly mastitis. RESULTS: In the first weeks of lactation, the q heifers which had inherited the unfavorable (q) paternal haplotype displayed a significantly higher number of udder quarters with very low somatic cell count (< 10,000 cells / ml) compared to their paternal half-sib sisters with the favorable (Q) paternal haplotype. This might result in impaired mammary gland sentinel function towards invading pathogens. Furthermore, across the course of the first lactation, there was indication that q half-sib heifers showed higher somatic cell counts, a surrogate trait for udder health, in whole milkings compared to their paternal half-sib sisters with the favorable (Q) paternal haplotype. Moreover, heifers with the haplotype Q had a higher feed intake and higher milk yield compared to those with the q haplotype. Results of this study indicate that differences in milk production and calculated energy balance per se are not the main drivers of the genetically determined differences between the BTA18 Q and q groups of heifers. CONCLUSIONS: The paternally inherited haplotype from a targeted BTA18 genomic region affect somatic cell count in udder quarters during the early postpartum period and might also contribute to further aspects of animal's health and performance traits due to indirect effects on feed intake and metabolism.
  • Two FtsH Proteases Contribute to Fitness and Adaptation of Clone C Strains.

    Kamal, Shady Mansour; Rybtke, Morten Levin; NIMTZ, MANFRED; Sperlein, Stefanie; Giske, Christian; Trček, Janja; Deschamps, Julien; Briandet, Romain; Dini, Luciana; Jänsch, Lothar; et al. (Frontiers, 2019-01-01)
    Pseudomonas aeruginosa is an environmental bacterium and a nosocomial pathogen with clone C one of the most prevalent clonal groups. The P. aeruginosa clone C specific genomic island PACGI-1 harbors a xenolog of ftsH encoding a functionally diverse membrane-spanning ATP-dependent metalloprotease on the core genome. In the aquatic isolate P. aeruginosa SG17M, the core genome copy ftsH1 significantly affects growth and dominantly mediates a broad range of phenotypes, such as secretion of secondary metabolites, swimming and twitching motility and resistance to aminoglycosides, while the PACGI-1 xenolog ftsH2 backs up the phenotypes in the ftsH1 mutant background. The two proteins, with conserved motifs for disaggregase and protease activity present in FtsH1 and FtsH2, have the ability to form homo- and hetero-oligomers with ftsH2 distinctively expressed in the late stationary phase of growth. However, mainly FtsH1 degrades a major substrate, the heat shock transcription factor RpoH. Pull-down experiments with substrate trap-variants inactive in proteolytic activity indicate both FtsH1 and FtsH2 to interact with the inhibitory protein HflC, while the phenazine biosynthesis protein PhzC was identified as a substrate of FtsH1. In summary, as an exception in P. aeruginosa, clone C harbors two copies of the ftsH metallo-protease, which cumulatively are required for the expression of a diversity of phenotypes.
  • Crystal structures and protein engineering of three different penicillin G acylases from Gram-positive bacteria with different thermostability.

    Mayer, Janine; Pippel, Jan; Günther, Gabriele; Müller, Carolin; Lauermann, Anna; Knuuti, Tobias; Blankenfeldt, Wulf; Jahn, Dieter; Biedendieck, Rebekka; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-06-21)
    Penicillin G acylase (PGA) catalyzes the hydrolysis of penicillin G to 6-aminopenicillanic acid and phenylacetic acid, which provides the precursor for most semisynthetic penicillins. Most applications rely on PGAs from Gram-negative bacteria. Here we describe the first three crystal structures for PGAs from Gram-positive Bacilli and their utilization in protein engineering experiments for the manipulation of their thermostability. PGAs from Bacillus megaterium (BmPGA, Tm = 56.0 °C), Bacillus thermotolerans (BtPGA, Tm = 64.5 °C), and Bacillus sp. FJAT-27231 (FJAT-PGA, Tm = 74.3 °C) were recombinantly produced with B. megaterium, secreted, purified to apparent heterogeneity, and crystallized. Structures with resolutions of 2.20 Å (BmPGA), 2.27 Å (BtPGA), and 1.36 Å (FJAT-PGA) were obtained. They revealed high overall similarity, reflecting the high identity of up to approx. 75%. Notably, the active center displays a deletion of more than ten residues with respect to PGAs from Gram-negatives. This enlarges the substrate binding site and may indicate a different substrate spectrum. Based on the structures, ten single-chain FJAT-PGAs carrying artificial linkers were produced. However, in all cases, complete linker cleavage was observed. While thermostability remained in the wild-type range, the enzymatic activity dropped between 30 and 60%. Furthermore, four hybrid PGAs carrying subunits from two different enzymes were successfully produced. Their thermostabilities mostly lay between the values of the two mother enzymes. For one PGA increased, enzyme activity was observed. Overall, the three novel PGA structures combined with initial protein engineering experiments provide the basis for establishment of new PGA-based biotechnological processes.
  • Crystal Structure of Dihydro-Heme d Dehydrogenase NirN from Pseudomonas aeruginosa Reveals Amino Acid Residues Essential for Catalysis.

    Klünemann, Thomas; Preuß, Arne; Adamczack, Julia; Rosa, Luis F M; Harnisch, Falk; Layer, Gunhild; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-06-04)
    Many bacteria can switch from oxygen to nitrogen oxides, such as nitrate or nitrite, as terminal electron acceptors in their respiratory chain. This process is called "denitrification" and enables biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa, making it more resilient to antibiotics and highly adaptable to different habitats. The reduction of nitrite to nitric oxide is a crucial step during denitrification. It is catalyzed by the homodimeric cytochrome cd1 nitrite reductase (NirS), which utilizes the unique isobacteriochlorin heme d1 as its reaction center. Although the reaction mechanism of nitrite reduction is well understood, far less is known about the biosynthesis of heme d1. The last step of its biosynthesis introduces a double bond in a propionate group of the tetrapyrrole to form an acrylate group. This conversion is catalyzed by the dehydrogenase NirN via a unique reaction mechanism. To get a more detailed insight into this reaction, the crystal structures of NirN with and without bound substrate have been determined. Similar to the homodimeric NirS, the monomeric NirN consists of an eight-bladed heme d1-binding β-propeller and a cytochrome c domain, but their relative orientation differs with respect to NirS. His147 coordinates heme d1 at the proximal side, whereas His323, which belongs to a flexible loop, binds at the distal position. Tyr461 and His417 are located next to the hydrogen atoms removed during dehydrogenation, suggesting an important role in catalysis. Activity assays with NirN variants revealed the essentiality of His147, His323 and Tyr461, but not of His417.

View more