Now showing items 1-20 of 251

    • Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation

      Heimes, A.; Brodhagen, J.; Weikard, R.; Becker, D.; Meyerholz, M. M.; Petzl, W.; Zerbe, H.; Schuberth, H. J.; Hoedemaker, M.; Schmicke, M.; et al. (Elsevier, 2020-07-01)
      Infection and inflammation of the mammary gland, and especially prevention of mastitis, are still major challenges for the dairy industry. Different approaches have been tried to reduce the incidence of mastitis. Genetic selection of cows with lower susceptibility to mastitis promises sustainable success in this regard. Bos taurus autosome (BTA) 18, particularly the region between 43 and 59 Mb, harbors quantitative trait loci (QTL) for somatic cell score, a surrogate trait for mastitis susceptibility. Scrutinizing the molecular bases hereof, we challenged udders from half-sib heifers having inherited either favorable paternal haplotypes for somatic cell score (Q) or unfavorable haplotypes (q) with the Staphylococcus aureus pathogen. RNA sequencing was used for an in-depth analysis of challenge-related alterations in the hepatic transcriptome. Liver exerts highly relevant immune functions aside from being the key metabolic organ. Hence, a holistic approach focusing on the liver enabled us to identify challenge-related and genotype-dependent differentially expressed genes and underlying regulatory networks. In response to the S. aureus challenge, we found that heifers with Q haplotypes displayed more activated immune genes and pathways after S. aureus challenge compared with their q half-sibs. Furthermore, we found a significant enrichment of differentially expressed loci in the genomic target region on BTA18, suggesting the existence of a regionally acting regulatory element with effects on a variety of genes in this region. © 2020 American Dairy Science Association
    • Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation.

      Heimes, A; Brodhagen, J; Weikard, R; Becker, D; Meyerholz, M M; Petzl, W; Zerbe, H; Schuberth, H-J; Hoedemaker, M; Schmicke, M; et al. (Elsevier, 2020-04-16)
      Infection and inflammation of the mammary gland, and especially prevention of mastitis, are still major challenges for the dairy industry. Different approaches have been tried to reduce the incidence of mastitis. Genetic selection of cows with lower susceptibility to mastitis promises sustainable success in this regard. Bos taurus autosome (BTA) 18, particularly the region between 43 and 59 Mb, harbors quantitative trait loci (QTL) for somatic cell score, a surrogate trait for mastitis susceptibility. Scrutinizing the molecular bases hereof, we challenged udders from half-sib heifers having inherited either favorable paternal haplotypes for somatic cell score (Q) or unfavorable haplotypes (q) with the Staphylococcus aureus pathogen. RNA sequencing was used for an in-depth analysis of challenge- related alterations in the hepatic transcriptome. Liver exerts highly relevant immune functions aside from being the key metabolic organ. Hence, a holistic approach focusing on the liver enabled us to identify challenge-related and genotype-dependent differentially expressed genes and underlying regulatory networks. In response to the S. aureus challenge, we found that heifers with Q haplotypes displayed more activated immune genes and pathways after S. aureus challenge compared with their q half-sibs. Furthermore, we found a significant enrichment of differentially expressed loci in the genomic target region on BTA18, suggesting the existence of a regionally acting regulatory element with effects on a variety of genes in this region.
    • The Quantitative Proteome of the Cement and Adhesive Gland of the Pedunculate Barnacle, pollicipes pollicipes.

      Domínguez-Pérez, Dany; Almeida, Daniela; Wissing, Josef; Machado, André M; Jänsch, Lothar; Castro, Luís Filipe; Antunes, Agostinho; Vasconcelos, Vitor; Campos, Alexandre; Cunha, Isabel (MDPI, 2020-04-05)
      Adhesive secretion has a fundamental role in barnacles' survival, keeping them in an adequate position on the substrate under a variety of hydrologic regimes. It arouses special interest for industrial applications, such as antifouling strategies, underwater industrial and surgical glues, and dental composites. This study was focused on the goose barnacle Pollicipes pollicipes adhesion system, a species that lives in the Eastern Atlantic strongly exposed intertidal rocky shores and cliffs. The protein composition of P. pollicipes cement multicomplex and cement gland was quantitatively studied using a label-free LC-MS high-throughput proteomic analysis, searched against a custom transcriptome-derived database. Overall, 11,755 peptide sequences were identified in the gland while 2880 peptide sequences were detected in the cement, clustered in 1616 and 1568 protein groups, respectively. The gland proteome was dominated by proteins of the muscle, cytoskeleton, and some uncharacterized proteins, while the cement was, for the first time, reported to be composed by nearly 50% of proteins that are not canonical cement proteins, mainly unannotated proteins, chemical cues, and protease inhibitors, among others. Bulk adhesive proteins accounted for one-third of the cement proteome, with CP52k being the most abundant. Some unannotated proteins highly expressed in the proteomes, as well as at the transcriptomic level, showed similar physicochemical properties to the known surface-coupling barnacle adhesive proteins while the function of the others remains to be discovered. New quantitative and qualitative clues are provided to understand the diversity and function of proteins in the cement of stalked barnacles, contributing to the whole adhesion model in Cirripedia.
    • Structural basis of ergothioneine biosynthesis.

      Stampfli, Anja R; Blankenfeldt, Wulf; Seebeck, Florian P (2020-05-11)
      Ergothioneine is a sulfur-containing histidine derivative synthesized by many bacteria and most fungi but it also finds its way into human tissue by way of specific absorption from the diet. The precise role of ergothioneine is not yet known but there is growing evidence that it plays a role as an antioxidant protecting human cells from oxidative stress and pathogenic bacteria from host defenses. In this review we highlight recent advances in understanding the structural basis of ergothioneine biosynthesis. In addition to unusual carbon–sulfur bond forming enzymology this research has revealed that ergothioneine biosynthesis has emerged at least three times by independent molecular evolution.
    • Elimination of Staphylococcus aureus from the bloodstream using a novel biomimetic sorbent haemoperfusion device.

      Seffer, Malin-Theres; Eden, Gabriele; Engelmann, Susanne; Kielstein, Jan T (2020-08-24)
      Removal of bacteria from the blood by means of extracorporeal techniques has been attempted for decades. In late 2019, the European Union licensed the first ever haemoperfusion device for removal of bacteria from the blood. The active ingredient of Seraph 100 Microbind Affinity Blood Filter is ultrahigh molecular weight polyethylene beads with endpoint-attached heparin. Bacteria have been shown to bind to heparin as they would usually do to the heparan sulfate on the cell surface, thereby being removed from the blood stream. We describe the first case of a female chronic haemodialysis patient in which this device was clinically used for a Staphylococcus aureus infection that persisted for 4 days despite antibiotic therapy. After a single treatment, the bacterial load decreased and the blood cultures at the end of a 4 hour haemoperfusion exhibited no bacterial growth.
    • Fluvastatin mitigates SARS-CoV-2 infection in human lung cells.

      Zapatero-Belinchón, Francisco J; Moeller, Rebecca; Lasswitz, Lisa; van Ham, Marco; Becker, Miriam; Brogden, Graham; Rosendal, Ebba; Bi, Wenjie; Carriquí-Madroñal, Belén; Islam, Koushikul; et al. (Cell Press, 2021-11-18)
      Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.
    • Recombinant protein production provoked accumulation of ATP, fructose-1,6-bisphosphate and pyruvate in E. coli K12 strain TG1.

      Weber, Jan; Li, Zhaopeng; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC, 2021-08-26)
      Background: Recently it was shown that production of recombinant proteins in E. coli BL21(DE3) using pET based expression vectors leads to metabolic stress comparable to a carbon overfeeding response. Opposite to original expectations generation of energy as well as catabolic provision of precursor metabolites were excluded as limiting factors for growth and protein production. On the contrary, accumulation of ATP and precursor metabolites revealed their ample formation but insufficient withdrawal as a result of protein production mediated constraints in anabolic pathways. Thus, not limitation but excess of energy and precursor metabolites were identified as being connected to the protein production associated metabolic burden. Results: Here we show that the protein production associated accumulation of energy and catabolic precursor metabolites is not unique to E. coli BL21(DE3) but also occurs in E. coli K12. Most notably, it was demonstrated that the IPTG-induced production of hFGF-2 using a tac-promoter based expression vector in the E. coli K12 strain TG1 was leading to persistent accumulation of key regulatory molecules such as ATP, fructose-1,6-bisphosphate and pyruvate. Conclusions: Excessive energy generation, respectively, accumulation of ATP during recombinant protein production is not unique to the BL21(DE3)/T7 promoter based expression system but also observed in the E. coli K12 strain TG1 using another promoter/vector combination. These findings confirm that energy is not a limiting factor for recombinant protein production. Moreover, the data also show that an accelerated glycolytic pathway flux aggravates the protein production associated "metabolic burden". Under conditions of compromised anabolic capacities cells are not able to reorganize their metabolic enzyme repertoire as required for reduced carbon processing.
    • Methicillin-resistant Staphylococcus pseudintermedius synthesizes deoxyadenosine to cause persistent infection.

      Bünsow, Dorothea; Tantawy, Eshraq; Ostermeier, Tjorven; Bähre, Heike; Garbe, Annette; Larsen, Jesper; Winstel, Volker; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2021-03-29)
      Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen of canine origin that causes an array of fatal diseases, including bacteremia and endocarditis. Despite large-scale genome sequencing projects have gained substantial insights into the genomic landscape of MRSP, current knowledge on virulence determinants that contribute to S. pseudintermedius pathogenesis during human or canine infection is very limited. Using a panel of genetically engineered MRSP variants and a mouse abscess model, we here identified the major secreted nuclease of S. pseudintermedius designated NucB and adenosine synthase A (AdsA) as two synergistically acting enzymes required for MRSP pathogenesis. Similar to Staphylococcus aureus, S. pseudintermedius requires nuclease secretion along with the activity of AdsA to degrade mammalian DNA for subsequent biosynthesis of cytotoxic deoxyadenosine. In this manner, S. pseudintermedius selectively kills macrophages during abscess formation thereby antagonizing crucial host immune cell responses. Ultimately, bioinformatics analyses revealed that NucB and AdsA are widespread in the global S. pseudintermedius population. Together, these data suggest that S. pseudintermedius deploys the canonical Nuc/AdsA pathway to persist during invasive disease and may aid in the development of new therapeutic strategies to combat infections caused by MRSP.
    • Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1.

      Schenke, Maren; Prause, Hélène-Christine; Bergforth, Wiebke; Przykopanski, Adina; Rummel, Andreas; Klawonn, Frank; Seeger, Bettina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-08-22)
      The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent cells or neuroblastoma cell lines or applicable for single toxin serotypes only. Here, human motor neurons (MNs), which are the physiological target of BoNTs, were generated from induced pluripotent stem cells (iPSCs) and compared to the neuroblastoma cell line SiMa, which is often used in cell-based assays for BoNT potency determination. In comparison with the mouse bioassay, human MNs exhibit a superior sensitivity to the BoNT serotypes A1 and B1 at levels that are reflective of human sensitivity. SiMa cells were able to detect BoNT/A1, but with much lower sensitivity than human MNs and appear unsuitable to detect any BoNT/B1 activity. The MNs used for these experiments were generated according to three differentiation protocols, which resulted in distinct sensitivity levels. Molecular parameters such as receptor protein concentration and electrical activity of the MNs were analyzed, but are not predictive for BoNT sensitivity. These results show that human MNs from several sources should be considered in BoNT testing and that human MNs are a physiologically relevant model, which could be used to optimize current BoNT potency testing.
    • In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution.

      Kumar, Suresh; Koenig, Johannes; Schneider, Andreas; Wermeling, Fredrik; Boddul, Sanjaykumar; Theobald, Sebastian J; Vollmer, Miriam; Kloos, Doreen; Lachmann, Nico; Klawonn, Frank; et al. (MDPI, 2021-08-05)
      Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, "DR4"), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.
    • Within-Host Adaptation of in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity.

      Mayer, Katharina; Kucklick, Martin; Marbach, Helene; Ehling-Schulz, Monika; Engelmann, Susanne; Grunert, Tom; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-08-17)
      Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen's strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype-phenotype associations under different infection-relevant growth conditions.
    • A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations.

      Bertoglio, Federico; Fühner, Viola; Ruschig, Maximilian; Heine, Philip Alexander; Abassi, Leila; Klünemann, Thomas; Rand, Ulfert; Meier, Doris; Langreder, Nora; Steinke, Stephan; et al. (Cell Press, 2021-07-07)
      The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.
    • Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network.

      Marasco, Michelangelo; Kirkpatrick, John; Nanna, Vittoria; Sikorska, Justyna; Carlomagno, Teresa; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-04-20)
      SHP2 is a ubiquitous protein tyrosine phosphatase, whose activity is regulated by phosphotyrosine (pY)-containing peptides generated in response to extracellular stimuli. Its crystal structure reveals a closed, auto-inhibited conformation in which the N-terminal Src homology 2 (N-SH2) domain occludes the catalytic site of the phosphatase (PTP) domain. High-affinity mono-phosphorylated peptides promote catalytic activity by binding to N-SH2 and disrupting the interaction with the PTP. The mechanism behind this process is not entirely clear, especially because N-SH2 is incapable of accommodating complete peptide binding when SHP2 is in the auto-inhibited state. Here, we show that pY performs an essential role in this process; in addition to its contribution to overall peptide-binding energy, pY-recognition leads to enhanced dynamics of the N-SH2 EF and BG loops via an allosteric communication network, which destabilizes the N-SH2–PTP interaction surface and simultaneously generates a fully accessible binding pocket for the C-terminal half of the phosphopeptide. Subsequently, full binding of the phosphopeptide is associated with the stabilization of activated SHP2. We demonstrate that this allosteric network exists only in N-SH2, which is directly involved in the regulation of SHP2 activity, while the C-terminal SH2 domain (C-SH2) functions primarily to recruit high-affinity bidentate phosphopeptides.
    • Discovery of TDI-10229: A Potent and Orally Bioavailable Inhibitor of Soluble Adenylyl Cyclase (sAC, ADCY10).

      Fushimi, Makoto; Buck, Hannes; Balbach, Melanie; Gorovyy, Anna; Ferreira, Jacob; Rossetti, Thomas; Kaur, Navpreet; Levin, Lonny R; Buck, Jochen; Quast, Jonathan; et al. (ACS, 2021-07-14)
      Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.
    • Development of a data generator for multivariate numerical data with arbitrary correlations and distributions

      Vahldiek, Kai; Zhou, Libing; Zhu, Wenfeng; Klawonn, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (IOS Press, 2021-01-01)
      Artificial or simulated data are particularly relevant in tests and benchmarks for machine learning methods, in teaching for exercises and for setting up analysis workflows. They are relevant when real data may not be used for reasons of data protection, or when special distributions or effects should be present in the data to test certain machine learning methods. In this paper a generator for multivariate numerical data with arbitrary marginal distributions and – as far as possible – arbitrary correlations is presented. The data generator is implemented in the open source statistics software R. It can also be used for categorical variables, if data are generated separately for the corresponding characteristics of a categorical variable. Additionally, outliers can be integrated. The use of the data generator is demonstrated with a concrete example.
    • smORFer: a modular algorithm to detect small ORFs in prokaryotes.

      Bartholomäus, Alexander; Kolte, Baban; Mustafayeva, Ayten; Goebel, Ingrid; Fuchs, Stephan; Benndorf, Dirk; Engelmann, Susanne; Ignatova, Zoya; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford Academic, 2021-06-14)
      Emerging evidence places small proteins (≤50 amino acids) more centrally in physiological processes. Yet, their functional identification and the systematic genome annotation of their cognate small open-reading frames (smORFs) remains challenging both experimentally and computationally. Ribosome profiling or Ribo-Seq (that is a deep sequencing of ribosome-protected fragments) enables detecting of actively translated open-reading frames (ORFs) and empirical annotation of coding sequences (CDSs) using the in-register translation pattern that is characteristic for genuinely translating ribosomes. Multiple identifiers of ORFs that use the 3-nt periodicity in Ribo-Seq data sets have been successful in eukaryotic smORF annotation. They have difficulties evaluating prokaryotic genomes due to the unique architecture (e.g. polycistronic messages, overlapping ORFs, leaderless translation, non-canonical initiation etc.). Here, we present a new algorithm, smORFer, which performs with high accuracy in prokaryotic organisms in detecting putative smORFs. The unique feature of smORFer is that it uses an integrated approach and considers structural features of the genetic sequence along with in-frame translation and uses Fourier transform to convert these parameters into a measurable score to faithfully select smORFs. The algorithm is executed in a modular way, and dependent on the data available for a particular organism, different modules can be selected for smORF search.
    • Pattern discovery in time series using autoencoder in comparison to nonlearning approaches

      Noering, Fabian Kai Dietrich; Schroeder, Yannik; Jonas, Konstantin; Klawonn, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (IOS Press, 2021-01-01)
      In technical systems the analysis of similar situations is a promising technique to gain information about the system's state, its health or wearing. Very often, situations cannot be defined but need to be discovered as recurrent patterns within time series data of the system under consideration. This paper addresses the assessment of different approaches to discover frequent variable-length patterns in time series. Because of the success of artificial neural networks (NN) in various research fields, a special issue of this work is the applicability of NNs to the problem of pattern discovery in time series. Therefore we applied and adapted a Convolutional Autoencoder and compared it to classical nonlearning approaches based on Dynamic Time Warping, based on time series discretization as well as based on the Matrix Profile. These nonlearning approaches have also been adapted, to fulfill our requirements like the discovery of potentially time scaled patterns from noisy time series. We showed the performance (quality, computing time, effort of parametrization) of those approaches in an extensive test with synthetic data sets. Additionally the transferability to other data sets is tested by using real life vehicle data. We demonstrated the ability of Convolutional Autoencoders to discover patterns in an unsupervised way. Furthermore the tests showed, that the Autoencoder is able to discover patterns with a similar quality like classical nonlearning approaches. © 2021 - IOS Press. All rights reserved.
    • NAD(H)-mediated tetramerization controls the activity of phospholipase PlaB.

      Diwo, Maurice; Michel, Wiebke; Aurass, Philipp; Kuhle-Keindorf, Katja; Pippel, Jan; Krausze, Joern; Wamp, Sabrina; Lang, Christina; Blankenfeldt, Wulf; Flieger, Antje; et al. (National Academy of Sciences, 2021-06-01)
      The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/β-hydrolase domain expanded by two noncanonical two-stranded β-sheets, β-6/β-7 and β-9/β-10. The C-terminal domain reveals a fold displaying a bilobed β-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δβ-9/β-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
    • Elevated Free Phosphatidylcholine Levels in Cerebrospinal Fluid Distinguish Bacterial from Viral CNS Infections.

      Al-Mekhlafi, Amani; Sühs, Kurt-Wolfram; Schuchardt, Sven; Kuhn, Maike; Müller-Vahl, Kirsten; Trebst, Corinna; Skripuletz, Thomas; Klawonn, Frank; Stangel, Martin; Pessler, Frank; et al. (MDPI, 2021-05-06)
      The identification of CSF biomarkers for bacterial meningitis can potentially improve diagnosis and understanding of pathogenesis, and the differentiation from viral CNS infections is of particular clinical importance. Considering that substantial changes in CSF metabolites in CNS infections have recently been demonstrated, we compared concentrations of 188 metabolites in CSF samples from patients with bacterial meningitis (n = 32), viral meningitis/encephalitis (n = 34), and noninflamed controls (n = 66). Metabolite reprogramming in bacterial meningitis was greatest among phosphatidylcholines, and concentrations of all 54 phosphatidylcholines were significantly (p = 1.2 × 10-25-1.5 × 10-4) higher than in controls. Indeed, all biomarkers for bacterial meningitis vs. viral meningitis/encephalitis with an AUC ≥ 0.86 (ROC curve analysis) were phosphatidylcholines. Four of the five most accurate (AUC ≥ 0.9) phosphatidylcholine biomarkers had higher sensitivity and negative predictive values than CSF lactate or cell count. Concentrations of the 10 most accurate phosphatidylcholine biomarkers were lower in meningitis due to opportunistic pathogens than in meningitis due to typical meningitis pathogens, and they correlated most strongly with parameters reflecting blood-CSF barrier dysfunction and CSF lactate (r = 0.73-0.82), less so with CSF cell count, and not with blood CRP. In contrast to the elevated phosphatidylcholine concentrations in CSF, serum concentrations remained relatively unchanged. Taken together, these results suggest that increased free CSF phosphatidylcholines are sensitive biomarkers for bacterial meningitis and do not merely reflect inflammation but are associated with local disease and a shift in CNS metabolism.
    • Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach.

      Fuchs, Stephan; Kucklick, Martin; Lehmann, Erik; Beckmann, Alexander; Wilkens, Maya; Kolte, Baban; Mustafayeva, Ayten; Ludwig, Tobias; Diwo, Maurice; Wissing, Josef; et al. (PLOS, 2021-06-01)
      Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.