Recent Submissions

  • Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.

    Gödecke, Natascha; Riedel, Jan; Herrmann, Sabrina; Behme, Sara; Rand, Ulfert; Kubsch, Tobias; Cicin-Sain, Luka; Hauser, Hansjörg; Köster, Mario; Wirth, Dagmar; et al. (Oxford Academic, 2020-11-18)
    Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.
  • Unsaturated Fatty Acids Control Biofilm Formation of and Other Gram-Positive Bacteria.

    Yuyama, Kamila Tomoko; Rohde, Manfred; Molinari, Gabriella; Stadler, Marc; Abraham, Wolf-Rainer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-11-08)
    Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.
  • Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.

    Hoang, Thanh T; Sikdar, Sinjini; Xu, Cheng-Jian; Lee, Mi Kyeong; Cardwell, Jonathan; Forno, Erick; Imboden, Medea; Jeong, Ayoung; Madore, Anne-Marie; Qi, Cancan; et al. (European Respiratory Society (ERS), 2020-09-03)
    Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
  • Characterization of Populations by Multilocus Variable Number of Tandem Repeats (MLVA) Genotyping from Drinking Water and Biofilm in Hospitals from Different Regions of the West Bank.

    Zayed, Ashraf R; Pecellin, Marina; Salah, Alaa; Alalam, Hanna; Butmeh, Suha; Steinert, Michael; Lesnik, Rene; Brettar, Ingrid; Höfle, Manfred G; Bitar, Dina M; et al. (MDPI, 2020-10-22)
    The West Bank can be considered a high-risk area for Legionnaires' disease (LD) due to its hot climate, intermittent water supply and roof storage of drinking water. Legionella, mostly L. pneumophila, are responsible for LD, a severe, community-acquired and nosocomial pneumonia. To date, no extensive assessment of Legionella spp and L. pneumophila using cultivation in combination with molecular approaches in the West Bank has been published. Two years of environmental surveillance of Legionella in water and biofilms in the drinking water distribution systems (DWDS) of eight hospitals was carried out; 180 L. pneumophila strains were isolated, mostly from biofilms in DWDS. Most of the isolates were identified as serogroup (Sg) 1 (60%) and 6 (30%), while a minor fraction comprised Sg 8 and 10. Multilocus Variable number of tandem repeats Analysis using 13 loci (MLVA-8(12)) was applied as a high-resolution genotyping method and compared to the standard Sequence Based Typing (SBT). The isolates were genotyped in 27 MLVA-8(12) genotypes (Gt), comprising four MLVA clonal complexes (VACC 1; 2; 5; 11). The major fraction of isolates constituted Sequence Type (ST)1 and ST461. Most of the MLVA-genotypes were highly diverse and often unique. The MLVA-genotype composition showed substantial regional variability. In general, the applied MLVA-method made it possible to reproducibly genotype the isolates, and was consistent with SBT but showed a higher resolution. The advantage of the higher resolution was most evident for the subdivision of the large strain sets of ST1 and ST461; these STs were shown to be highly pneumonia-relevant in a former study. This shows that the resolution by MLVA is advantageous for back-tracking risk sites and for the avoidance of outbreaks of L. pneumophila. Overall, our results provide important insights into the detailed population structure of L. pneumophila, allowing for better risk assessment for DWDS.
  • RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.

    Knittel, Vanessa; Sadana, Pooja; Seekircher, Stephanie; Stolle, Anne-Sophie; Körner, Britta; Volk, Marcel; Jeffries, Cy M; Svergun, Dmitri I; Heroven, Ann Kathrin; Scrima, Andrea; et al. (PLOS, 2020-09-23)
    Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
  • Impact of Von Willebrand Factor on Bacterial Pathogenesis.

    Steinert, Michael; Ramming, Isabell; Bergmann, Simone; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2020-09-03)
    Von Willebrand factor (VWF) is a mechano-sensitive protein with crucial functions in normal hemostasis, which are strongly dependant on the shear-stress mediated defolding and multimerization of VWF in the blood stream. Apart from bleeding disorders, higher plasma levels of VWF are often associated with a higher risk of cardiovascular diseases. Herein, the disease symptoms are attributed to the inflammatory response of the activated endothelium and share high similarities to the reaction of the host vasculature to systemic infections caused by pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae. The bacteria recruit circulating VWF, and by binding to immobilized VWF on activated endothelial cells in blood flow, they interfere with the physiological functions of VWF, including platelet recruitment and coagulation. Several bacterial VWF binding proteins have been identified and further characterized by biochemical analyses. Moreover, the development of a combination of sophisticated cell culture systems simulating shear stress levels of the blood flow with microscopic visualization also provided valuable insights into the interaction mechanism between bacteria and VWF-strings. In vivo studies using mouse models of bacterial infection and zebrafish larvae provided evidence that the interaction between bacteria and VWF promotes bacterial attachment, coagulation, and thrombus formation, and thereby contributes to the pathophysiology of severe infectious diseases such as infective endocarditis and bacterial sepsis. This mini-review summarizes the current knowledge of the interaction between bacteria and the mechano-responsive VWF, and corresponding pathophysiological disease symptoms.
  • Recombinant protein production-associated metabolic burden reflects anabolic constraints and reveals similarities to a carbon overfeeding response.

    Li, Zhaopeng; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-09-03)
    A comparison of the metabolic response of Escherichia coli BL21 (DE3) towards the production of human basic fibroblast growth factor (hFGF-2) or towards carbon overfeeding revealed similarities which point to constraints in anabolic pathways. Contrary to expectations, neither energy generation (e.g., ATP) nor provision of precursor molecules for nucleotides (e.g., uracil) and amino acids (e.g., pyruvate, glutamate) limit host cell and plasmid-encoded functions. Growth inhibition is assumed to occur when hampered anabolic capacities do not match with the ongoing and overwhelming carbon catabolism. Excessive carbon uptake leads to by-product secretion, for example, pyruvate, acetate, glutamate, and energy spillage, for example, accumulation and degradation of adenine nucleotides with concomitant accumulation of extracellular hypoxanthine. The cellular response towards compromised anabolic capacities involves downregulation of cAMP formation, presumably responsible for subsequently better-controlled glucose uptake and resultant accumulation of glucose in the culture medium. Growth inhibition is neglectable under conditions of reduced carbon availability when hampered anabolic capacities also match with catabolic carbon processing. The growth inhibitory effect with accompanying energy spillage, respectively, hypoxanthine secretion and cessation of cAMP formation is not unique to the production of hFGF-2 but observed during the production of other proteins and also during overexpression of genes without transcript translation.
  • OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes.

    Wang, Xu; Mulas, Floriana; Yi, Wenjing; Brunn, Anna; Nishanth, Gopala; Just, Sissy; Waisman, Ari; Brück, Wolfgang; Deckert, Martina; Schlüter, Dirk; et al. (EMBO Press, 2019-04-03)
    Astrocytes are critical regulators of neuroinflammation in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Growing evidence indicates that ubiquitination of signaling molecules is an important cell-intrinsic mechanism governing astrocyte function during MS and EAE Here, we identified an upregulation of the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) in astrocytes during MS and EAE Mice with astrocyte-specific OTUB1 ablation developed more severe EAE due to increased leukocyte accumulation, proinflammatory gene transcription, and demyelination in the spinal cord as compared to control mice. OTUB1-deficient astrocytes were hyperactivated in response to IFN-γ, a fingerprint cytokine of encephalitogenic T cells, and produced more proinflammatory cytokines and chemokines than control astrocytes. Mechanistically, OTUB1 inhibited IFN-γ-induced Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling by K48 deubiquitination and stabilization of the JAK2 inhibitor suppressor of cytokine signaling 1 (SOCS1). Thus, astrocyte-specific OTUB1 is a critical inhibitor of neuroinflammation in CNS autoimmunity.
  • Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

    Davies, Mark R; McIntyre, Liam; Mutreja, Ankur; Lacey, Jake A; Lees, John A; Towers, Rebecca J; Duchêne, Sebastián; Smeesters, Pierre R; Frost, Hannah R; Price, David J; et al. (Nature publishing group(NPG), 2019-05-27)
    Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.
  • Irreversible impact of chronic hepatitis C virus infection on human natural killer cell diversity.

    Strunz, Benedikt; Hengst, Julia; Wedemeyer, Heiner; Björkström, Niklas K; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Shared Science org, 2018-07-25)
    Diversity is crucial for the immune system to efficiently combat infections. Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to the control of viral infections. NK cells were for long thought to be a homogeneous population of cells. However, recent work has instead revealed NK cells to represent a highly diverse population of immune cells where a vast number of subpopulations with distinct characteristics exist across tissues. However, the degree to which a chronic viral infection affects NK cell diversity remains elusive. Hepatitis C virus (HCV) is effective in establishing chronic infection in humans. During the last years, new direct-acting antiviral drugs (DAA) have revolutionized treatment of chronic hepatitis C, enabling rapid cure in the majority of patients. This allows us to study the influence of a chronic viral infection and its subsequent elimination on the NK cell compartment with a focus on NK cell diversity. In our recent study (Nat Commun, 9:2275), we show that chronic HCV infection irreversibly impacts human NK cell repertoire diversity.
  • Varying the sustained release of BMP-2 from chitosan nanogel-functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications.

    Sundermann, Julius; Oehmichen, Sarah; Sydow, Steffen; Burmeister, Laura; Quaas, Bastian; Hänsch, Robert; Rinas, Ursula; Hoffmann, Andrea; Menzel, Henning; Bunjes, Heike; et al. (Wiley and sons, 2020-06-30)
    Polycaprolactone (PCL) fiber mats with different surface modifications were functionalized with a chitosan nanogel coating to attach the growth factor human bone morphogenetic protein 2 (BMP-2). Three different hydrophilic surface modifications were compared with regard to the binding and in vitro release of BMP-2. The type of surface modification and the specific surface area derived from the fiber thickness had an important influence on the degree of protein loading. Coating the PCL fibers with polydopamine resulted in the binding of the largest BMP-2 quantity per surface area. However, most of the binding was irreversible over the investigated period of time, causing a low release in vitro. PCL fiber mats with a chitosan-graft-PCL coating and an additional alginate layer, as well as PCL fiber mats with an air plasma surface modification boundless BMP-2, but the immobilized protein could almost completely be released. With polydopamine and plasma modifications as well as with unmodified PCL, high amounts of BMP-2 could also be attached directly to the surface. Integration of BMP-2 into the chitosan nanogel functionalization considerably increased binding on all hydrophilized surfaces and resulted in a sustained release with an initial burst release of BMP-2 without detectable loss of bioactivity in vitro.
  • Deconvolution of bulk blood eQTL effects into immune cell subpopulations.

    Aguirre-Gamboa, Raúl; de Klein, Niek; di Tommaso, Jennifer; Claringbould, Annique; van der Wijst, Monique Gp; de Vries, Dylan; Brugge, Harm; Oelen, Roy; Võsa, Urmo; Zorro, Maria M; et al. (BMC, 2020-06-12)
    A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
  • Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function.

    Kurniawan, Henry; Franchina, Davide G; Guerra, Luana; Bonetti, Lynn; -Baguet, Leticia Soriano; Grusdat, Melanie; Schlicker, Lisa; Hunewald, Oliver; Dostert, Catherine; Merz, Myriam P; et al. (Elsevier (Cell Press), 2020-03-25)
    Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.
  • Enteric Murine Ganglionitis Induced by Autoimmune CD8 T Cells Mimics Human Gastrointestinal Dysmotility.

    Sanchez-Ruiz, Monica; Brunn, Anna; Montesinos-Rongen, Manuel; Rudroff, Claudia; Hartmann, Melanie; Schlüter, Dirk; Pfitzer, Gabriele; Deckert, Martina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2018-12-27)
    Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.
  • Purification of the human fibroblast growth factor 2 using novel animal-component free materials

    Bolten, Svenja Nicolin; Knoll, Anne-Sophie; Li, Zhaopeng; Gellermann, Pia; Pepelanova, Iliyana; Rinas, Ursula; Scheper, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier BV, 2020-08)
    This paper analyzes the use of animal-component free chromatographic materials for the efficient purifi- cation of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and pu- rified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatog- raphy were tested as a substitute for heparin. The MMCs were cation exchangers characterized with fur- ther functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin’s molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC –the column Foresight TM Nuvia TM cPrime TM from Bio-Rad Laboratories and the col- umn HiTrap TM Capto TM MMC from GE Healthcare Life Sciences - can be regarded as effective animal- component free alternatives to the heparin - based adsorber.
  • Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production.

    Osbelt, Lisa; Thiemann, Sophie; Smit, Nathiana; Lesker, Till Robin; Schröter, Madita; Gálvez, Eric J C; Schmidt-Hohagen, Kerstin; Pils, Marina C; Mühlen, Sabrina; Dersch, Petra; et al. (PLOS, 2020-03-24)
    The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.
  • Non-Targeted Mass Isotopolome Analysis Using Stable Isotope Patterns to Identify Metabolic Changes.

    Dudek, Christian-Alexander; Schlicker, Lisa; Hiller, Karsten; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
    Gas chromatography coupled with mass spectrometry can provide an extensive overview of the metabolic state of a biological system. Analysis of raw mass spectrometry data requires powerful data processing software to generate interpretable results. Here we describe a data processing workflow to generate metabolite levels, mass isotopomer distribution, similarity and variability analysis of metabolites in a nontargeted manner, using stable isotope labeling. Using our data analysis software, no bioinformatic or programming background is needed to generate results from raw mass spectrometry data.
  • Characterization of a transcriptional TPP riboswitch in the human pathogen Neisseriameningitidis.

    Righetti, Francesco; Materne, Solange Lise; Boss, John; Eichner, Hannes; Charpentier, Emmanuelle; Loh, Edmund; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2020-02-20)
    Increasing evidence has demonstrated that regulatory RNA elements such as riboswitches (RS) play a pivotal role in the fine-tuning of bacterial gene expression. In this study, we investigated and characterized a novel transcriptional thiamine pyrophosphate (TPP) RS in the obligate human pathogen N. meningitidis MC58 (serogroup B). This RS is located in the 5´ untranslated region upstream of thiC gene, encoding a protein involved in TPP biosynthesis, an essential cofactor for all living beings. Primer extension revealed the transcriptional start site of thiC. Northern blot analysis of thiC mRNA and reporter gene studies confirmed the presence of an active TPP-sensing RS. Expression patterns of the wild-type RS and site-specific mutants showed that it is an OFF switch that controls transcription elongation of thiC mRNA. Interestingly, the regulatory mechanism of the meningococcal thiC RS resembles the Gram-positive Bacillus subtilis thiC RS rather than the Gram-negative Escherichia coli thiC RS. Therefore, the meningococcal thiC RS represents a rare example of transcriptional RS in a Gram-negative bacterium. We further observed that the RS is actively involved in modulating gene expression in response to different growth media and to supplemented bacterial and eukaryotic cell lysates as possible sources of nutrients in the nasopharynx. Our results suggest that RS-mediated gene regulation could influence meningococcal fitness, through the fine-tuning of biosynthesis and scavenging of nutrients and cofactors, such as thiamine.
  • Nasal DNA methylation profiling of asthma and rhinitis.

    Qi, Cancan; Jiang, Yale; Yang, Ivana V; Forno, Erick; Wang, Ting; Vonk, Judith M; Gehring, Ulrike; Smit, Henriëtte A; Milanzi, Edith B; Carpaij, Orestes A; et al. (2020-01-14)
  • MAIT cells are enriched and highly functional in ascites of patients with decompensated liver cirrhosis.

    Niehaus, Christian E; Strunz, Benedikt; Cornillet, Martin; Falk, Christine S; Schnieders, Ansgar; Maasoumy, Benjamin; Hardtke, Svenja; Manns, Michael P; Rm Kraft, Anke; Björkström, Niklas K; et al. (Wiley Online Open, 2020-02-03)
    Patients with advanced liver cirrhosis have an increased susceptibility to infections. As part of the cirrhosis-associated immune dysfunction, mucosal associated invariant T (MAIT) cells, that have the capacity to respond towards bacteria, are severely diminished in circulation and liver tissue. However, MAIT cell presence and function in the peritoneal cavity, a common anatomical site for infections in cirrhosis, remain elusive. To study this, matched peripheral blood and ascites fluid were collected from 35 patients with decompensated cirrhosis, with or without spontaneous bacterial peritonitis (SBP). MAIT cell phenotype and function were analyzed using high-dimensional flow cytometry and obtained data was compared to blood samples of healthy controls (n=24) and patients with compensated cirrhosis (n=11). We found circulating MAIT cells to be severely decreased in cirrhotic patients as compared to controls. In contrast, in ascites fluid, MAIT cells were significantly increased together with CD14+ CD16+ monocytes, ILCs, and NK cells. This was paralleled by elevated levels of several pro-inflammatory cytokines and chemokines in ascites fluid as compared to plasma. Peritoneal MAIT cells displayed an activated tissue-resident phenotype and this was corroborated by increased functional responses following stimulation with E. coli or lL-12 + IL-18 as compared to circulating MAIT cells. During SBP, peritoneal MAIT cell frequencies increased most among all major immune cell subsets, suggestive of active homing of MAIT cells to the site of infection. CONCLUSIONS: Despite severely diminished MAIT cell numbers and impaired phenotype in circulation, peritoneal MAIT cells remain abundant, activated, and highly functional in decompensated cirrhosis and are further enriched in SBP. This suggests that peritoneal MAIT cells could be of interest for immune intervention strategies in patients with decompensated liver cirrhosis and SBP.

View more