publications of the scientific administration (GFW)
Recent Submissions
-
Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment.Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
-
Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper.The coronavirus disease 2019 (COVID-19) pandemic poses an enormous challenge to healthcare systems in affected communities. Older patients and those with pre-existing medical conditions have been identified as populations at risk of a severe disease course. It remains unclear at this point to what extent chronic liver diseases should be considered as risk factors, due to a shortage of appropriate studies. However, patients with advanced liver disease and those after liver transplantation represent vulnerable patient cohorts with an increased risk of infection and/or a severe course of COVID-19. In addition, the current pandemic requires unusual allocation of healthcare resources which may negatively impact the care of patients with chronic liver disease that continue to require medical attention. Thus, the challenge hepatologists are facing is to promote telemedicine in the outpatient setting, prioritise outpatient contacts, avoid nosocomial dissemination of the virus to patients and healthcare providers, and at the same time maintain standard care for patients who require immediate medical attention.
-
Cytotoxicity, Intracellular Replication, and Contact-Dependent Pore Formation of Genotyped Environmental Isolates from Hospital Water Systems in the West Bank, Palestine.Legionella pneumophila is the causative agent of Legionnaires' disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires' disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.
-
Plasma Metabolome Signature Indicative of Germline Status Independent of Cancer Incidence.Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in gBRCA1+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between gBRCA1+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in gBRCA1+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of BRCA1-associated breast cancer.
-
Misinterpretation of the odds ratios.No abstract available
-
Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
-
Relevance of inducible nitric oxide synthase for immune control of Mycobacterium avium subspecies paratuberculosis infection in mice.Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (JD), an incurable chronic intestinal bowel disease in ruminants. JD occurs worldwide and causes enormous economic burden in dairy industry. Research on JD pathobiology is hampered by its complexity which cannot completely be mimicked by small animal models. As a model the mouse allows dissecting some pathogenicity features of MAP. However, for unknown reasons MAP exhibits reduced growth in granulomas of infected mice compared to other Mycobacterium avium subspecies. Here, we characterized immune reactions of MAP-infected C57BL/6 mice. After infection, mice appeared fully immunocompetent. A strong antigen-specific T cell response was elicited indicated by IFNγ production of splenic T cells re-stimulated with MAP antigens. Function of splenic dendritic cells and proliferation of adoptively transferred antigen-specific CD4+ T cells was unaltered. Isolated splenic myeloid cells from infected mice revealed that MAP resides in CD11b+ macrophages. Importantly, sorted CD11b+CD11c- cells expressed high level of type 2 nitric oxide synthase (NOS2) but only low levels of pro- and anti-inflammatory cytokines. Correspondingly, MAP-infected MAC2 expressing myeloid cells in spleen and liver granuloma displayed strong expression of NOS2. In livers of infected Nos2-/-mice higher bacterial loads, more granuloma and larger areas of tissue damage were observed 5 weeks post infection compared to wild type mice. In vitro, MAP was sensitive to NO released by a NO-donor. Thus, a strong T cell response and concomitant NOS2/NO activity appears to control MAP infection, but allows development of chronicity and pathogen persistence. A similar mechanism might explain persistence of MAP in ruminants.
-
Recombinant protein production associated growth inhibition results mainly from transcription and not from translation.Background: Recombinant protein production can be stressful to the host organism. The extent of stress is determined by the specific properties of the recombinant transcript and protein, by the rates of transcription and translation, and by the environmental conditions encountered during the production process. Results: The impact of the transcription of the T7-promoter controlled genes encoding human basic fibroblast growth factor (hFGF-2) and green fluorescent protein (GFP) as well as the translation into the recombinant protein on the growth properties of the production host E. coli BL21(DE3) were investigated. This was done by using expression vectors where the promoter region or the ribosome binding site(s) or both were removed. It is shown that already transcription without protein translation imposes a metabolic burden on the host cell. Translation of the transcript into large amounts of a properly folded protein does not show any effect on cell growth in the best case, e.g. high-level production of GFP in Luria-Bertani medium. However, translation appears to contribute to the metabolic burden if it is connected to protein folding associated problems, e.g. inclusion body formation. Conclusion: The so-called metabolic burden of recombinant protein production is mainly attributed to transcription but can be enhanced through translation and those processes following translation (e.g. protein folding and degradation, heat-shock responses).
-
Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells.Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
-
Biogeography and Environmental Drivers of Abundance and Genotype Composition Across the West Bank: Relevance of a Genotype-Based Ecology for Understanding Occurrence.The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of eight sites where Legionella was observed at all (range: 30-500 CFU/liter). By contrast, biofilm and PCR-based analyses showed a higher prevalence. Statistical analyses with physico-chemical parameters revealed a decrease of L. pneumophila abundance for water and biofilm with increasing magnesium concentrations (>30 mg/l). MLVA-genotype analysis of the L. pneumophila isolates and their spatial distribution indicated three niches characterized by distinct physico-chemical parameters and inhabited by specific consortia of genotypes. This study provides novel insights into mechanisms shaping L. pneumophila populations and triggering their abundance leading to an understanding of their genotype-specific niches and ecology in support of improved prevention measures.
-
Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
-
DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies.DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7).
-
Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome.Inflammatory markers, including 4E-BP1 (P = 9.60-16 and 1.41-7) and MMP-1 (P = 7.09-9 and 3.51-9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found.
-
Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.
-
Impact of process temperature and organic loading rate on cellulolytic/hydrolytic biofilm microbiomes during biomethanation of ryegrass silage revealed by genome-centered metagenomics and metatranscriptomicsBackground: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage twophase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted. Results: In total, 78 bacterial and archaeal MAGs representing the most abundant members of the communities, and featuring defined quality criteria were selected and characterized in detail. Determination of MAG abundances under the tested conditions by mapping of the obtained metagenome sequence reads to the MAGs revealed that MAG abundance profiles were mainly shaped by the temperature but also by the OLR. However, the OLR effect was more pronounced for the mesophilic systems as compared to the thermophilic ones. In contrast, metatranscriptome mapping to MAGs subsequently normalized to MAG abundances showed that under thermophilic conditions, MAGs respond to increased OLRs by shifting their transcriptional activities mainly without adjusting their proliferation rates. This is a clear difference compared to the behavior of the microbiome under mesophilic conditions. Here, the response to increased OLRs involved adjusting of proliferation rates and corresponding transcriptional activities. The analysis led to the identification of MAGs positively responding to increased OLRs. The most outstanding MAGs in this regard, obviously well adapted to higher OLRs and/or associated conditions, were assigned to the order Clostridiales (Acetivibrio sp.) for the mesophilic biofilm and the orders Bacteroidales (Prevotella sp. and an unknown species), Lachnospirales (Herbinix sp. and Kineothrix sp.) and Clostridiales (Clostridium sp.) for the thermophilic biofilm. Genome-based metabolic reconstruction and transcriptional profiling revealed that positively responding MAGs mainly are involved in hydrolysis of grass silage, acidogenesis and / or acetogenesis. Conclusions: An integrated -omics approach enabled the identification of new AD biofilm keystone species featuring outstanding performance under stress conditions such as increased OLRs. Genome-based knowledge on the metabolic potential and transcriptional activity of responsive microbiome members will contribute to the development of improved microbiological AD management strategies for biomethanation of renewable biomass. Keywords: Metagenome assembled genomes, Integrated -omics, Polyomics, Anaerobic digestion, Biogas, Bioconversion, Microbial community structure, Methane, Metabolic activity
-
Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.
-
Unsaturated Fatty Acids Control Biofilm Formation of and Other Gram-Positive Bacteria.Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.
-
Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
-
Characterization of Populations by Multilocus Variable Number of Tandem Repeats (MLVA) Genotyping from Drinking Water and Biofilm in Hospitals from Different Regions of the West Bank.The West Bank can be considered a high-risk area for Legionnaires' disease (LD) due to its hot climate, intermittent water supply and roof storage of drinking water. Legionella, mostly L. pneumophila, are responsible for LD, a severe, community-acquired and nosocomial pneumonia. To date, no extensive assessment of Legionella spp and L. pneumophila using cultivation in combination with molecular approaches in the West Bank has been published. Two years of environmental surveillance of Legionella in water and biofilms in the drinking water distribution systems (DWDS) of eight hospitals was carried out; 180 L. pneumophila strains were isolated, mostly from biofilms in DWDS. Most of the isolates were identified as serogroup (Sg) 1 (60%) and 6 (30%), while a minor fraction comprised Sg 8 and 10. Multilocus Variable number of tandem repeats Analysis using 13 loci (MLVA-8(12)) was applied as a high-resolution genotyping method and compared to the standard Sequence Based Typing (SBT). The isolates were genotyped in 27 MLVA-8(12) genotypes (Gt), comprising four MLVA clonal complexes (VACC 1; 2; 5; 11). The major fraction of isolates constituted Sequence Type (ST)1 and ST461. Most of the MLVA-genotypes were highly diverse and often unique. The MLVA-genotype composition showed substantial regional variability. In general, the applied MLVA-method made it possible to reproducibly genotype the isolates, and was consistent with SBT but showed a higher resolution. The advantage of the higher resolution was most evident for the subdivision of the large strain sets of ST1 and ST461; these STs were shown to be highly pneumonia-relevant in a former study. This shows that the resolution by MLVA is advantageous for back-tracking risk sites and for the avoidance of outbreaks of L. pneumophila. Overall, our results provide important insights into the detailed population structure of L. pneumophila, allowing for better risk assessment for DWDS.
-
RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.