• Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis.

      Tsay, Hsin-Chieh; Yuan, Qinggong; Balakrishnan, Asha; Kaiser, Marina; Möbus, Selina; Kozdrowska, Emilia; Farid, Marwa; Tegtmeyer, Pia-Katharina; Borst, Katharina; Vondran, Florian W R; et al. (Elsevier, 2018-12-22)
      Fibrosis, a cardinal feature of a dysfunctional liver, significantly contributes to the ever-increasing mortality due to end-stage chronic liver diseases. The crosstalk between hepatocytes and hepatic stellate cells (HSCs) plays a key role in the progression of fibrosis. Although ample efforts have been devoted to elucidate the functions of HSCs during liver fibrosis, the regulatory functions of hepatocytes remain elusive. Using an unbiased functional microRNA (miRNA) screening, we investigated the ability of hepatocytes to regulate fibrosis by fine-tuning gene expression via miRNA modulation. The in vivo functional analyses were performed by inhibiting miRNA in hepatocytes using adeno-associated virus in carbon-tetrachloride- and 3,5-di-diethoxycarbonyl-1,4-dihydrocollidine-induced liver fibrosis. Blocking miRNA-221-3p function in hepatocytes during chronic liver injury facilitated recovery of the liver and faster resolution of the deposited extracellular matrix. Furthermore, we demonstrate that reduced secretion of C-C motif chemokine ligand 2, as a result of post-transcriptional regulation of GNAI2 (G protein alpha inhibiting activity polypeptide 2) by miRNA-221-3p, mitigates liver fibrosis. Collectively, miRNA modulation in hepatocytes, an easy-to-target cell type in the liver, may serve as a potential therapeutic approach for liver fibrosis.
    • A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis.

      Halbedel, Sven; Prager, Rita; Banerji, Sangeeta; Kleta, Sylvia; Trost, Eva; Nishanth, Gopala; Alles, Georg; Hölzel, Christina; Schlesiger, Friederike; Pietzka, Ariane; et al. (Springer Nature, 2019-01-01)
      An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.
    • miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity.

      Łyszkiewicz, Marcin; Winter, Samantha J; Witzlau, Katrin; Föhse, Lisa; Brownlie, Rebecca; Puchałka, Jacek; Verheyden, Nikita A; Kunze-Schumacher, Heike; Imelmann, Esther; Blume, Jonas; et al. (PLOS, 2019-03-01)
      The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.
    • Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB.

      Groenewold, Maike K; Hebecker, Stefanie; Fritz, Christiane; Czolkoss, Simon; Wiesselmann, Milan; Heinz, Dirk W; Jahn, Dieter; Narberhaus, Franz; Aktas, Meriyem; Moser, Jürgen; et al. (Wiley-Blackwell, 2019-01-01)
      Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.