• Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

      Davies, Mark R; McIntyre, Liam; Mutreja, Ankur; Lacey, Jake A; Lees, John A; Towers, Rebecca J; Duchêne, Sebastián; Smeesters, Pierre R; Frost, Hannah R; Price, David J; et al. (Nature publishing group(NPG), 2019-05-27)
      Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.
    • Autoimmune hepatitis: From the initial therapy to the differentiated approach [Autoimmunhepatitis: Von der ersten Therapie zum differenzierten Vorgehen]

      Taubert, R.; Manns, M. P.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
      Gegliederte Zusammenfassung Hintergrund: Die Autoimmunhepatitis (AIH) ist zwar eine seltene Erkrankung zeigt aber wie andere Autoimmunerkrankungen in der westlichen Welt eine ansteigende Inzidenz und hat unbehandelt einen schlechten natürlichen Verlauf. Ziel der Arbeit (Fragestellung): Darstellung des aktuellen Kenntnisstands zur Pathogenese, Diagnostik und Behandlung der AIH. Material und Methoden: Zusammenfassung der gültigen nationalen sowie internationalen Leitlinien und exemplarischer aktuell publizierter Studien. Ergebnisse und Diskussion: Die Therapie der AIH aus Prednisolon +/- Azathioprin war beginnend in den 1960 Jahren die erste medikamentöse Therapie einer Lebererkrankung, die die Lebenserwartung nachweislich verbessern konnte. Seit 2011 Jahren ist zusätzlich Budesonid für AIH-Patienten ohne Leberzirrhose als alternatives Steroid mit weniger systemischen Nebenwirkungen zugelassen. Abgesehen davon hat sich die initiale Erstlinientherapie der AIH in den letzten 40 Jahren nicht grundlegend verändert. Das Therapieziel der kompletten biochemischen Remission wird bei ca. 70-80% der Patienten erreicht. Bei hohen Rückfallraten trotz lang anhaltender biochemischer und histologischer Remission ist bei den meisten Patienten eine lebenslange Therapie notwendig. Bisherige Zweitlinientherapien beruhen vor allem auf retrospektiven Studienergebnissen und daher fehlen einheitliche Empfehlungen zur Zweitlinientherapie von den internationalen Fachgesellschaften. Ebenso ist keine Zweitlinientherapie von den Zulassungsbehörden wie FDA oder EMA zugelassen.
    • Biogeography and Environmental Drivers of Abundance and Genotype Composition Across the West Bank: Relevance of a Genotype-Based Ecology for Understanding Occurrence.

      Zayed, Ashraf R; Butmeh, Suha; Pecellin, Marina; Salah, Alaa; Alalam, Hanna; Steinert, Michael; Höfle, Manfred G; Bitar, Dina M; Brettar, Ingrid; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-12-01)
      The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of eight sites where Legionella was observed at all (range: 30-500 CFU/liter). By contrast, biofilm and PCR-based analyses showed a higher prevalence. Statistical analyses with physico-chemical parameters revealed a decrease of L. pneumophila abundance for water and biofilm with increasing magnesium concentrations (>30 mg/l). MLVA-genotype analysis of the L. pneumophila isolates and their spatial distribution indicated three niches characterized by distinct physico-chemical parameters and inhabited by specific consortia of genotypes. This study provides novel insights into mechanisms shaping L. pneumophila populations and triggering their abundance leading to an understanding of their genotype-specific niches and ecology in support of improved prevention measures.
    • Breaking the vicious cycle of antibiotic killing and regrowth of biofilm-residing .

      Müsken, Mathias; Pawar, Vinay; Schwebs, Timo; Bähre, Heike; Felgner, Sebastian; Weiss, Siegfried; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-08)
      Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physico-chemical insults. In addition to the general recalcitrance of biofilm-bacteria, high bacterial loads in biofilm-associated infections significantly diminishes the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols, that have been established to serve the eradication of acute infections, fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real-time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as measure for effectiveness of the antimicrobial treatment. It depends on the: i) nature and concentration of the antibiotic, ii) duration of antibiotic treatment; iii) application as mono or combination therapy and iv) time intervals of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages with time intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.
    • Catalytically Active Cas9 Mediates Transcriptional Interference to Facilitate Bacterial Virulence.

      Ratner, Hannah K; Escalera-Maurer, Andrés; Le Rhun, Anaïs; Jaggavarapu, Siddharth; Wozniak, Jessie E; Crispell, Emily K; Charpentier, Emmanuelle; Weiss, David S; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier; Cell Press, 2019-06-24)
      In addition to defense against foreign DNA, the CRISPR-Cas9 system of Francisella novicida represses expression of an endogenous immunostimulatory lipoprotein. We investigated the specificity and molecular mechanism of this regulation, demonstrating that Cas9 controls a highly specific regulon of four genes that must be repressed for bacterial virulence. Regulation occurs through a protospacer adjacent motif (PAM)-dependent interaction of Cas9 with its endogenous DNA targets, dependent on a non-canonical small RNA (scaRNA) and tracrRNA. The limited complementarity between scaRNA and the endogenous DNA targets precludes cleavage, highlighting the evolution of scaRNA to repress transcription without lethally targeting the chromosome. We show that scaRNA can be reprogrammed to repress other genes, and with engineered, extended complementarity to an exogenous target, the repurposed scaRNA:tracrRNA-FnoCas9 machinery can also direct DNA cleavage. Natural Cas9 transcriptional interference likely represents a broad paradigm of regulatory functionality, which is potentially critical to the physiology of numerous Cas9-encoding pathogenic and commensal organisms.
    • Characterization of Populations by Multilocus Variable Number of Tandem Repeats (MLVA) Genotyping from Drinking Water and Biofilm in Hospitals from Different Regions of the West Bank.

      Zayed, Ashraf R; Pecellin, Marina; Salah, Alaa; Alalam, Hanna; Butmeh, Suha; Steinert, Michael; Lesnik, Rene; Brettar, Ingrid; Höfle, Manfred G; Bitar, Dina M; et al. (MDPI, 2020-10-22)
      The West Bank can be considered a high-risk area for Legionnaires' disease (LD) due to its hot climate, intermittent water supply and roof storage of drinking water. Legionella, mostly L. pneumophila, are responsible for LD, a severe, community-acquired and nosocomial pneumonia. To date, no extensive assessment of Legionella spp and L. pneumophila using cultivation in combination with molecular approaches in the West Bank has been published. Two years of environmental surveillance of Legionella in water and biofilms in the drinking water distribution systems (DWDS) of eight hospitals was carried out; 180 L. pneumophila strains were isolated, mostly from biofilms in DWDS. Most of the isolates were identified as serogroup (Sg) 1 (60%) and 6 (30%), while a minor fraction comprised Sg 8 and 10. Multilocus Variable number of tandem repeats Analysis using 13 loci (MLVA-8(12)) was applied as a high-resolution genotyping method and compared to the standard Sequence Based Typing (SBT). The isolates were genotyped in 27 MLVA-8(12) genotypes (Gt), comprising four MLVA clonal complexes (VACC 1; 2; 5; 11). The major fraction of isolates constituted Sequence Type (ST)1 and ST461. Most of the MLVA-genotypes were highly diverse and often unique. The MLVA-genotype composition showed substantial regional variability. In general, the applied MLVA-method made it possible to reproducibly genotype the isolates, and was consistent with SBT but showed a higher resolution. The advantage of the higher resolution was most evident for the subdivision of the large strain sets of ST1 and ST461; these STs were shown to be highly pneumonia-relevant in a former study. This shows that the resolution by MLVA is advantageous for back-tracking risk sites and for the avoidance of outbreaks of L. pneumophila. Overall, our results provide important insights into the detailed population structure of L. pneumophila, allowing for better risk assessment for DWDS.
    • Characterization of a transcriptional TPP riboswitch in the human pathogen Neisseriameningitidis.

      Righetti, Francesco; Materne, Solange Lise; Boss, John; Eichner, Hannes; Charpentier, Emmanuelle; Loh, Edmund; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2020-02-20)
      Increasing evidence has demonstrated that regulatory RNA elements such as riboswitches (RS) play a pivotal role in the fine-tuning of bacterial gene expression. In this study, we investigated and characterized a novel transcriptional thiamine pyrophosphate (TPP) RS in the obligate human pathogen N. meningitidis MC58 (serogroup B). This RS is located in the 5´ untranslated region upstream of thiC gene, encoding a protein involved in TPP biosynthesis, an essential cofactor for all living beings. Primer extension revealed the transcriptional start site of thiC. Northern blot analysis of thiC mRNA and reporter gene studies confirmed the presence of an active TPP-sensing RS. Expression patterns of the wild-type RS and site-specific mutants showed that it is an OFF switch that controls transcription elongation of thiC mRNA. Interestingly, the regulatory mechanism of the meningococcal thiC RS resembles the Gram-positive Bacillus subtilis thiC RS rather than the Gram-negative Escherichia coli thiC RS. Therefore, the meningococcal thiC RS represents a rare example of transcriptional RS in a Gram-negative bacterium. We further observed that the RS is actively involved in modulating gene expression in response to different growth media and to supplemented bacterial and eukaryotic cell lysates as possible sources of nutrients in the nasopharynx. Our results suggest that RS-mediated gene regulation could influence meningococcal fitness, through the fine-tuning of biosynthesis and scavenging of nutrients and cofactors, such as thiamine.
    • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

      Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
      Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
    • Cytotoxicity, Intracellular Replication, and Contact-Dependent Pore Formation of Genotyped Environmental Isolates from Hospital Water Systems in the West Bank, Palestine.

      Zayed, Ashraf R; Pecellin, Marina; Jaber, Lina; Butmeh, Suha; Bahader, Shereen A; Steinert, Michael; Höfle, Manfred G; Brettar, Ingrid; Bitar, Dina M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-04-01)
      Legionella pneumophila is the causative agent of Legionnaires' disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires' disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.
    • Deconvolution of bulk blood eQTL effects into immune cell subpopulations.

      Aguirre-Gamboa, Raúl; de Klein, Niek; di Tommaso, Jennifer; Claringbould, Annique; van der Wijst, Monique Gp; de Vries, Dylan; Brugge, Harm; Oelen, Roy; Võsa, Urmo; Zorro, Maria M; et al. (BMC, 2020-06-12)
      A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
    • Developmental induction of human T-cell responses against Candida albicans and Aspergillus fumigatus.

      Vogel, Katrin; Pierau, Mandy; Arra, Aditya; Lampe, Karen; Schlueter, Dirk; Arens, Christoph; Brunner-Weinzierl, Monika C; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature publishing group, 2018-11-15)
      The origin of human T-cell responses against fungal pathogens early in life is not clearly understood. Here, we show that antifungal T-cell responses are vigorously initiated within the first years of life against lysates and peptides of Candida albicans or Aspergillus fumigatus, presented by autologous monocytes. The neonatal responding T-cell pool consists of 20 different TCR-V
    • DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies.

      Vehmeijer, Florianne O L; Küpers, Leanne K; Sharp, Gemma C; Salas, Lucas A; Lent, Samantha; Jima, Dereje D; Tindula, Gwen; Reese, Sarah; Qi, Cancan; Gruzieva, Olena; et al. (BMC, 2020-11-25)
      DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7).
    • DSA are associated with more graft injury, more fibrosis and upregulation of rejection associated transcripts in subclinical rejection.

      Höfer, Anne; Jonigk, Danny; Hartleben, Björn; Verboom, Murielle; Hallensleben, Michael; Hübscher, Stefan G; Manns, Michael P; Jaeckel, Elmar; Taubert, Richard; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Lippincott, Williams & Wilkins , 2019-10-23)
      Background: Subclinical T cell-mediated rejection (subTCMR) is commonly found after liver transplantation and has a good short-term prognosis, even when it is left untreated. Donor-specific antibodies (DSA) are putatively associated with a worse prognosis for recipient and graft after liver transplantation. Methods: To assess the immune regulation in subTCMR grafts, gene expression of 93 transcripts for graft injury, tolerance and immune regulation was analyzed in 77 biopsies with “no histological rejection” (NHR; n=25), “clinical TCMR” (cTMCR; n=16) and subTCMR (n=36). In addition, all available subTCMR biopsies (n=71) were tested for DSA with bead assays. Results: SubTCMR showed heterogeneous and intermediate expression profiles of transcripts that were upregulated in cTCMR. Graft gene expression suggested a lower activation of effector lymphocytes and a higher activation of regulatory T cells in grafts with subTCMR compared to cTCMR.DSA positivity in subTCMR was associated with histological evidence of more severe graft inflammation and fibrosis. This more severe DSA+ associated graft injury in subTCMR was converged with an upregulation of cTCMR associated transcripts. In nonsupervised analysis DSA positive subTCMR mostly clustered together with cTCMR, while DSA negative subTCMR clustered together with NHR. Conclusion: T cell-mediated rejection seem to form a continuum of alloimmune activation. Although subTCMR exhibited less expression of TCMR associated transcript, DSA positivity in subTCMR was associated with an upregulation of rejection associated transcripts. The identification of DSA positive subclinical rejection might help to define patients with more inflammation in the graft and development of fibrosis.
    • Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the International Autoimmune Hepatitis Group.

      Than, Nwe Ni; Hodson, James; Schmidt-Martin, Daniel; Taubert, Richard; Wawman, Rebecca E; Botter, Meemee; Gautam, Nishant; Bock, Kilian; Jones, Rebecca; Appanna, Gautham D; et al. (Elsevier, 2019-12-01)
      Twenty-two patients with type-1 AIH were included, with a median age of 40 years at diagnosis (range 19-79); 15/22 (68%) were female and 18/22 (82%) were Caucasian. The median period from diagnosis to the end of follow-up in these patients was 11 years (range 3-28). Values of alanine aminotransferase, aspartate aminotransferase and albumin improved significantly following rituximab therapy, and were sustained for up to 2 years (all p ≪0.001). Prednisolone doses were significantly reduced by 12 months post-treatment (p = 0.003), with 13/21 (62%) patients having a dose reduction. Over a median post-treatment follow-up period of 6 years (range 1-10), 5 patients developed AIH flares at a median of 22 months post-treatment, giving an estimated 71% freedom from AIH flare at 2 years. Four of these patients received a second course of treatment, of whom 2 had subsequent further flares. No serious adverse events attributable to rituximab were recorded.
    • An endothelial cell line infected by Kaposi's sarcoma-associated herpes virus (KSHV) allows the investigation of Kaposi's sarcoma and the validation of novel viral inhibitors in vitro and in vivo.

      Dubich, Tatyana; Lieske, Anna; Santag, Susann; Beauclair, Guillaume; Rückert, Jessica; Herrmann, Jennifer; Gorges, Jan; Büsche, Guntram; Kazmaier, Uli; Hauser, Hansjörg; et al. (2019-01-04)
      Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.
    • Enteric Murine Ganglionitis Induced by Autoimmune CD8 T Cells Mimics Human Gastrointestinal Dysmotility.

      Sanchez-Ruiz, Monica; Brunn, Anna; Montesinos-Rongen, Manuel; Rudroff, Claudia; Hartmann, Melanie; Schlüter, Dirk; Pfitzer, Gabriele; Deckert, Martina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2018-12-27)
      Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.
    • Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.

      Hoang, Thanh T; Sikdar, Sinjini; Xu, Cheng-Jian; Lee, Mi Kyeong; Cardwell, Jonathan; Forno, Erick; Imboden, Medea; Jeong, Ayoung; Madore, Anne-Marie; Qi, Cancan; et al. (European Respiratory Society (ERS), 2020-09-03)
      Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
    • Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer

      Mahalunkar, Sneha; Yadav, Amit Singh; Gorain, Mahadeo; Pawar, Vinay; Braathen, Ranveig; Weiss, Siegfried; Bogen, Bjarne; Gosavi, Suresh W.; Kundu, Gopal C.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2019-01-01)
      Background: Curcumin has been widely used owing to its various medicinal properties including antitumor effects. However, its clinical application is limited by its instability, poor solubility and low bioavailability. Folic acid (FA)-functionalized nanoformulations may enhance the sustained release of an anticancer drug (curcumin) by tumor-specific targeting to improve therapeutic benefit. This study aims to design a nanoconjugate (NC) comprised of folate–curcumin-loaded gold–polyvinylpyrrolidone nanoparticles (FA–CurAu-PVP NPs) for targeted delivery in breast cancer model systems. Methods: We developed curcumin-loaded FA-functionalized Au-PVP NCs by layer-by-layer assembly. The folic acid–curcumin Au-PVP NCs (FA–CurAu-PVP NCs) were characterized by ultraviolet–visible spectra, Fourier transform infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. In vitro anticancer and antimigratory effects of NCs were examined by performing MTT and wound migration assays. The in vivo antitumor efficacy of NCs was investigated using a preclinical breast cancer orthotopic mouse model. Results: Curcumin (40 µg/mL) was loaded along with conjugation of folate onto Au-PVP NPs to form FA–CurAu-PVP NCs. The size and charge of the NCs were increased gradually through layer-by-layer assembly and showed 80% release of curcumin at acidic pH. The NC did not show aggregation when incubated with human serum and mimicked an intrinsic peroxidase-like property in the presence of 3,3ʹ,5,5ʹ-tetramethylbenzidine substrate. The MTT data using these NCs showed efficient anticancer activity at lower doses in estrogen/ progesterone receptor (ER/PR)-negative cells compared with ER/PR-positive cells. Furthermore, the NCs did not show cytotoxicity at the investigated concentration in human breast epithelial and mouse fibroblast cell lines. They showed inhibitory effects on cell migration and high antitumor efficacy in in vivo analysis. Conclusion: These results suggest that folate-based tumor targeting using CurAu-PVP NCs is a promising approach for tumor-specific therapy of breast cancer without harming normal cells.
    • Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function.

      Kurniawan, Henry; Franchina, Davide G; Guerra, Luana; Bonetti, Lynn; -Baguet, Leticia Soriano; Grusdat, Melanie; Schlicker, Lisa; Hunewald, Oliver; Dostert, Catherine; Merz, Myriam P; et al. (Elsevier (Cell Press), 2020-03-25)
      Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.
    • Guidelines for Small-Scale Production and Purification of Hepatitis B Surface Antigen Virus-Like Particles from Recombinant Pichia pastoris.

      Zahid, Maria; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Humana Press, 2019-01-01)
      Virus-like particle (VLP)-based vaccines have been in the market since decades for preventing viral infection and have proven their usefulness also in other areas of biotechnology. Here, we describe in detail simple small-scale production and purification procedures for the generation of hepatitis B surface antigen (HBsAg) VLPs using Pichia pastoris as expression host. This protocol may also be applicable with variations to other HBsAg-based VLPs additionally carrying antigens of other pathogens.