• Impact of Von Willebrand Factor on Bacterial Pathogenesis.

      Steinert, Michael; Ramming, Isabell; Bergmann, Simone; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2020-09-03)
      Von Willebrand factor (VWF) is a mechano-sensitive protein with crucial functions in normal hemostasis, which are strongly dependant on the shear-stress mediated defolding and multimerization of VWF in the blood stream. Apart from bleeding disorders, higher plasma levels of VWF are often associated with a higher risk of cardiovascular diseases. Herein, the disease symptoms are attributed to the inflammatory response of the activated endothelium and share high similarities to the reaction of the host vasculature to systemic infections caused by pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae. The bacteria recruit circulating VWF, and by binding to immobilized VWF on activated endothelial cells in blood flow, they interfere with the physiological functions of VWF, including platelet recruitment and coagulation. Several bacterial VWF binding proteins have been identified and further characterized by biochemical analyses. Moreover, the development of a combination of sophisticated cell culture systems simulating shear stress levels of the blood flow with microscopic visualization also provided valuable insights into the interaction mechanism between bacteria and VWF-strings. In vivo studies using mouse models of bacterial infection and zebrafish larvae provided evidence that the interaction between bacteria and VWF promotes bacterial attachment, coagulation, and thrombus formation, and thereby contributes to the pathophysiology of severe infectious diseases such as infective endocarditis and bacterial sepsis. This mini-review summarizes the current knowledge of the interaction between bacteria and the mechano-responsive VWF, and corresponding pathophysiological disease symptoms.
    • Recombinant protein production-associated metabolic burden reflects anabolic constraints and reveals similarities to a carbon overfeeding response.

      Li, Zhaopeng; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-09-03)
      A comparison of the metabolic response of Escherichia coli BL21 (DE3) towards the production of human basic fibroblast growth factor (hFGF-2) or towards carbon overfeeding revealed similarities which point to constraints in anabolic pathways. Contrary to expectations, neither energy generation (e.g., ATP) nor provision of precursor molecules for nucleotides (e.g., uracil) and amino acids (e.g., pyruvate, glutamate) limit host cell and plasmid-encoded functions. Growth inhibition is assumed to occur when hampered anabolic capacities do not match with the ongoing and overwhelming carbon catabolism. Excessive carbon uptake leads to by-product secretion, for example, pyruvate, acetate, glutamate, and energy spillage, for example, accumulation and degradation of adenine nucleotides with concomitant accumulation of extracellular hypoxanthine. The cellular response towards compromised anabolic capacities involves downregulation of cAMP formation, presumably responsible for subsequently better-controlled glucose uptake and resultant accumulation of glucose in the culture medium. Growth inhibition is neglectable under conditions of reduced carbon availability when hampered anabolic capacities also match with catabolic carbon processing. The growth inhibitory effect with accompanying energy spillage, respectively, hypoxanthine secretion and cessation of cAMP formation is not unique to the production of hFGF-2 but observed during the production of other proteins and also during overexpression of genes without transcript translation.
    • OTUB1 inhibits CNS autoimmunity by preventing IFN-γ-induced hyperactivation of astrocytes.

      Wang, Xu; Mulas, Floriana; Yi, Wenjing; Brunn, Anna; Nishanth, Gopala; Just, Sissy; Waisman, Ari; Brück, Wolfgang; Deckert, Martina; Schlüter, Dirk; et al. (EMBO Press, 2019-04-03)
      Astrocytes are critical regulators of neuroinflammation in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Growing evidence indicates that ubiquitination of signaling molecules is an important cell-intrinsic mechanism governing astrocyte function during MS and EAE Here, we identified an upregulation of the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) in astrocytes during MS and EAE Mice with astrocyte-specific OTUB1 ablation developed more severe EAE due to increased leukocyte accumulation, proinflammatory gene transcription, and demyelination in the spinal cord as compared to control mice. OTUB1-deficient astrocytes were hyperactivated in response to IFN-γ, a fingerprint cytokine of encephalitogenic T cells, and produced more proinflammatory cytokines and chemokines than control astrocytes. Mechanistically, OTUB1 inhibited IFN-γ-induced Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling by K48 deubiquitination and stabilization of the JAK2 inhibitor suppressor of cytokine signaling 1 (SOCS1). Thus, astrocyte-specific OTUB1 is a critical inhibitor of neuroinflammation in CNS autoimmunity.
    • Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics.

      Davies, Mark R; McIntyre, Liam; Mutreja, Ankur; Lacey, Jake A; Lees, John A; Towers, Rebecca J; Duchêne, Sebastián; Smeesters, Pierre R; Frost, Hannah R; Price, David J; et al. (Nature publishing group(NPG), 2019-05-27)
      Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.
    • Irreversible impact of chronic hepatitis C virus infection on human natural killer cell diversity.

      Strunz, Benedikt; Hengst, Julia; Wedemeyer, Heiner; Björkström, Niklas K; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Shared Science org, 2018-07-25)
      Diversity is crucial for the immune system to efficiently combat infections. Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to the control of viral infections. NK cells were for long thought to be a homogeneous population of cells. However, recent work has instead revealed NK cells to represent a highly diverse population of immune cells where a vast number of subpopulations with distinct characteristics exist across tissues. However, the degree to which a chronic viral infection affects NK cell diversity remains elusive. Hepatitis C virus (HCV) is effective in establishing chronic infection in humans. During the last years, new direct-acting antiviral drugs (DAA) have revolutionized treatment of chronic hepatitis C, enabling rapid cure in the majority of patients. This allows us to study the influence of a chronic viral infection and its subsequent elimination on the NK cell compartment with a focus on NK cell diversity. In our recent study (Nat Commun, 9:2275), we show that chronic HCV infection irreversibly impacts human NK cell repertoire diversity.
    • Varying the sustained release of BMP-2 from chitosan nanogel-functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications.

      Sundermann, Julius; Oehmichen, Sarah; Sydow, Steffen; Burmeister, Laura; Quaas, Bastian; Hänsch, Robert; Rinas, Ursula; Hoffmann, Andrea; Menzel, Henning; Bunjes, Heike; et al. (Wiley and sons, 2020-06-30)
      Polycaprolactone (PCL) fiber mats with different surface modifications were functionalized with a chitosan nanogel coating to attach the growth factor human bone morphogenetic protein 2 (BMP-2). Three different hydrophilic surface modifications were compared with regard to the binding and in vitro release of BMP-2. The type of surface modification and the specific surface area derived from the fiber thickness had an important influence on the degree of protein loading. Coating the PCL fibers with polydopamine resulted in the binding of the largest BMP-2 quantity per surface area. However, most of the binding was irreversible over the investigated period of time, causing a low release in vitro. PCL fiber mats with a chitosan-graft-PCL coating and an additional alginate layer, as well as PCL fiber mats with an air plasma surface modification boundless BMP-2, but the immobilized protein could almost completely be released. With polydopamine and plasma modifications as well as with unmodified PCL, high amounts of BMP-2 could also be attached directly to the surface. Integration of BMP-2 into the chitosan nanogel functionalization considerably increased binding on all hydrophilized surfaces and resulted in a sustained release with an initial burst release of BMP-2 without detectable loss of bioactivity in vitro.
    • Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function.

      Kurniawan, Henry; Franchina, Davide G; Guerra, Luana; Bonetti, Lynn; -Baguet, Leticia Soriano; Grusdat, Melanie; Schlicker, Lisa; Hunewald, Oliver; Dostert, Catherine; Merz, Myriam P; et al. (Elsevier (Cell Press), 2020-03-25)
      Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.
    • Deconvolution of bulk blood eQTL effects into immune cell subpopulations.

      Aguirre-Gamboa, Raúl; de Klein, Niek; di Tommaso, Jennifer; Claringbould, Annique; van der Wijst, Monique Gp; de Vries, Dylan; Brugge, Harm; Oelen, Roy; Võsa, Urmo; Zorro, Maria M; et al. (BMC, 2020-06-12)
      A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
    • Enteric Murine Ganglionitis Induced by Autoimmune CD8 T Cells Mimics Human Gastrointestinal Dysmotility.

      Sanchez-Ruiz, Monica; Brunn, Anna; Montesinos-Rongen, Manuel; Rudroff, Claudia; Hartmann, Melanie; Schlüter, Dirk; Pfitzer, Gabriele; Deckert, Martina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2018-12-27)
      Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.
    • Purification of the human fibroblast growth factor 2 using novel animal-component free materials

      Bolten, Svenja Nicolin; Knoll, Anne-Sophie; Li, Zhaopeng; Gellermann, Pia; Pepelanova, Iliyana; Rinas, Ursula; Scheper, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier BV, 2020-08)
      This paper analyzes the use of animal-component free chromatographic materials for the efficient purifi- cation of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and pu- rified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatog- raphy were tested as a substitute for heparin. The MMCs were cation exchangers characterized with fur- ther functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin’s molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC –the column Foresight TM Nuvia TM cPrime TM from Bio-Rad Laboratories and the col- umn HiTrap TM Capto TM MMC from GE Healthcare Life Sciences - can be regarded as effective animal- component free alternatives to the heparin - based adsorber.
    • Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production.

      Osbelt, Lisa; Thiemann, Sophie; Smit, Nathiana; Lesker, Till Robin; Schröter, Madita; Gálvez, Eric J C; Schmidt-Hohagen, Kerstin; Pils, Marina C; Mühlen, Sabrina; Dersch, Petra; et al. (PLOS, 2020-03-24)
      The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.
    • Non-Targeted Mass Isotopolome Analysis Using Stable Isotope Patterns to Identify Metabolic Changes.

      Dudek, Christian-Alexander; Schlicker, Lisa; Hiller, Karsten; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
      Gas chromatography coupled with mass spectrometry can provide an extensive overview of the metabolic state of a biological system. Analysis of raw mass spectrometry data requires powerful data processing software to generate interpretable results. Here we describe a data processing workflow to generate metabolite levels, mass isotopomer distribution, similarity and variability analysis of metabolites in a nontargeted manner, using stable isotope labeling. Using our data analysis software, no bioinformatic or programming background is needed to generate results from raw mass spectrometry data.
    • Characterization of a transcriptional TPP riboswitch in the human pathogen Neisseriameningitidis.

      Righetti, Francesco; Materne, Solange Lise; Boss, John; Eichner, Hannes; Charpentier, Emmanuelle; Loh, Edmund; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2020-02-20)
      Increasing evidence has demonstrated that regulatory RNA elements such as riboswitches (RS) play a pivotal role in the fine-tuning of bacterial gene expression. In this study, we investigated and characterized a novel transcriptional thiamine pyrophosphate (TPP) RS in the obligate human pathogen N. meningitidis MC58 (serogroup B). This RS is located in the 5´ untranslated region upstream of thiC gene, encoding a protein involved in TPP biosynthesis, an essential cofactor for all living beings. Primer extension revealed the transcriptional start site of thiC. Northern blot analysis of thiC mRNA and reporter gene studies confirmed the presence of an active TPP-sensing RS. Expression patterns of the wild-type RS and site-specific mutants showed that it is an OFF switch that controls transcription elongation of thiC mRNA. Interestingly, the regulatory mechanism of the meningococcal thiC RS resembles the Gram-positive Bacillus subtilis thiC RS rather than the Gram-negative Escherichia coli thiC RS. Therefore, the meningococcal thiC RS represents a rare example of transcriptional RS in a Gram-negative bacterium. We further observed that the RS is actively involved in modulating gene expression in response to different growth media and to supplemented bacterial and eukaryotic cell lysates as possible sources of nutrients in the nasopharynx. Our results suggest that RS-mediated gene regulation could influence meningococcal fitness, through the fine-tuning of biosynthesis and scavenging of nutrients and cofactors, such as thiamine.
    • Nasal DNA methylation profiling of asthma and rhinitis.

      Qi, Cancan; Jiang, Yale; Yang, Ivana V; Forno, Erick; Wang, Ting; Vonk, Judith M; Gehring, Ulrike; Smit, Henriëtte A; Milanzi, Edith B; Carpaij, Orestes A; et al. (2020-01-14)
    • MAIT cells are enriched and highly functional in ascites of patients with decompensated liver cirrhosis.

      Niehaus, Christian E; Strunz, Benedikt; Cornillet, Martin; Falk, Christine S; Schnieders, Ansgar; Maasoumy, Benjamin; Hardtke, Svenja; Manns, Michael P; Rm Kraft, Anke; Björkström, Niklas K; et al. (Wiley Online Open, 2020-02-03)
      Patients with advanced liver cirrhosis have an increased susceptibility to infections. As part of the cirrhosis-associated immune dysfunction, mucosal associated invariant T (MAIT) cells, that have the capacity to respond towards bacteria, are severely diminished in circulation and liver tissue. However, MAIT cell presence and function in the peritoneal cavity, a common anatomical site for infections in cirrhosis, remain elusive. To study this, matched peripheral blood and ascites fluid were collected from 35 patients with decompensated cirrhosis, with or without spontaneous bacterial peritonitis (SBP). MAIT cell phenotype and function were analyzed using high-dimensional flow cytometry and obtained data was compared to blood samples of healthy controls (n=24) and patients with compensated cirrhosis (n=11). We found circulating MAIT cells to be severely decreased in cirrhotic patients as compared to controls. In contrast, in ascites fluid, MAIT cells were significantly increased together with CD14+ CD16+ monocytes, ILCs, and NK cells. This was paralleled by elevated levels of several pro-inflammatory cytokines and chemokines in ascites fluid as compared to plasma. Peritoneal MAIT cells displayed an activated tissue-resident phenotype and this was corroborated by increased functional responses following stimulation with E. coli or lL-12 + IL-18 as compared to circulating MAIT cells. During SBP, peritoneal MAIT cell frequencies increased most among all major immune cell subsets, suggestive of active homing of MAIT cells to the site of infection. CONCLUSIONS: Despite severely diminished MAIT cell numbers and impaired phenotype in circulation, peritoneal MAIT cells remain abundant, activated, and highly functional in decompensated cirrhosis and are further enriched in SBP. This suggests that peritoneal MAIT cells could be of interest for immune intervention strategies in patients with decompensated liver cirrhosis and SBP.
    • Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the International Autoimmune Hepatitis Group.

      Than, Nwe Ni; Hodson, James; Schmidt-Martin, Daniel; Taubert, Richard; Wawman, Rebecca E; Botter, Meemee; Gautam, Nishant; Bock, Kilian; Jones, Rebecca; Appanna, Gautham D; et al. (Elsevier, 2019-12-01)
      Twenty-two patients with type-1 AIH were included, with a median age of 40 years at diagnosis (range 19-79); 15/22 (68%) were female and 18/22 (82%) were Caucasian. The median period from diagnosis to the end of follow-up in these patients was 11 years (range 3-28). Values of alanine aminotransferase, aspartate aminotransferase and albumin improved significantly following rituximab therapy, and were sustained for up to 2 years (all p ≪0.001). Prednisolone doses were significantly reduced by 12 months post-treatment (p = 0.003), with 13/21 (62%) patients having a dose reduction. Over a median post-treatment follow-up period of 6 years (range 1-10), 5 patients developed AIH flares at a median of 22 months post-treatment, giving an estimated 71% freedom from AIH flare at 2 years. Four of these patients received a second course of treatment, of whom 2 had subsequent further flares. No serious adverse events attributable to rituximab were recorded.
    • Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2.

      Quaas, Bastian; Burmeister, Laura; Li, Zhaopeng; Satalov, Alexandra; Behrens, Peter; Hoffmann, Andrea; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-11-20)
      PURPOSE: There is a plethora of studies on recombinant human bone morphogenetic protein-2 (rhBMP-2) application and delivery systems, but surprisingly few reports address the biophysical properties of the protein which are of crucial importance to develop effective delivery systems or to solve general problems related to rhBMP-2 production, purification, analysis and application. METHODS:The solubility, stability and bioactivity of rhBMP-2 obtained by renaturation of E. coli derived inclusion bodies was assessed at different pH and in different buffer systems using (dynamic) light scattering and thermal shift assays as well as intrinsic fluorescence measurements and luciferase based bioassays. RESULTS: rhBMP-2 is poorly soluble at physiological pH and higher. The presence of divalent anions further decreases the solubility even under acidic conditions. Thermal stability analyses revealed that rhBMP-2 precipitates are more stable compared to the soluble protein. Moreover, correctly folded rhBMP-2 is also bioactive as precipitated protein and precipitates readily dissolve under appropriate buffer conditions. Once properly formed rhBMP-2 also retains biological activity after temporary exposure to high concentrations of chaotropic denaturants. However, care should be taken to discriminate bioactive rhBMP-2 precipitates from misfolded rhBMP-2 aggregates, e.g. resolvability in MES buffer (pH 5) and a discrete peak in thermoshift experiments are mandatory for correctly folded rhBMP-2. CONCLUSIONS: Our analysis revealed that E. coli derived rhBMP-2 precipitates are not only bioactive but are also more stable compared to the soluble dimeric molecules. Knowledge about these unusual properties will be helpful to design improved delivery systems requiring lower amounts of rhBMP-2 in clinical applications.
    • Heparin: role in protein purification and substitution with animal-component free material.

      Bolten, Svenja Nicolin; Rinas, Ursula; Scheper, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2018-10-01)
      Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin's activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.
    • Quantitation of large, middle and small hepatitis B surface proteins in HBeAg-positive patients treated with peginterferon alfa-2a.

      Rinker, Franziska; Bremer, Corinna M; Schröder, Kathrin; Wiegand, Steffen B; Bremer, Birgit; Manns, Michael P; Kraft, Anke R; Wedemeyer, Heiner; Yang, Lei; Pavlovic, Vedran; et al. (Wiley, 2019-11-13)
      BACKGROUND & AIMS: Hepatitis B virus (HBV) contains three viral surface proteins, large, middle and small hepatitis B surface protein (LHBs, MHBs, SHBs). Proportions of LHBs and MHBs are lower in patients with inactive versus active chronic infection. Interferon alfa may convert HBeAg-positive chronic hepatitis B (CHB) to an inactive carrier state, but prediction of sustained response is unsatisfactory. The aim of this study was to test the hypothesis that quantification of MHBs and LHBs may allow for a better prognosis of therapeutic response than total hepatitis B surface antigen (HBsAg) concentration. METHODS: HBs proteins were measured before and during peginterferon alfa-2a therapy in serum from 127 Asian patients with HBeAg-positive CHB. Sustained response was defined as hepatitis B e antigen (HBeAg) seroconversion 24 weeks post-treatment. RESULTS: Mean total HBs levels were significantly lower in responders versus nonresponders at all time points (P<.05) and decreased steadily during the initial 24 weeks' treatment (by 1.16 versus 0.86 ng/mL in responders/nonresponders, respectively) with unchanged relative proportions. Genotype B had a twofold higher proportion of LHBs than genotype C (13% versus 6%). HBV DNA, HBeAg, HBsAg, and HBs protein levels predicted response equally well but not optimally (area under the ROC curve values >0.70). CONCLUSIONS: HBs proteins levels differ by HBV genotype. However, quantification of HBs proteins has no advantage over the already established HBsAg assays to predict response to peginterferon alfa-2a therapy in HBeAg-positive patients.
    • Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis.

      Schlicker, Lisa; Szebenyi, Doletha M E; Ortiz, Semira R; Heinz, Alexander; Hiller, Karsten; Field, Martha S; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (American Society for Biochemistry and Molecular Biology, 2019-11-01)
      The low-calorie sweetener erythritol is endogenously produced from glucose through the pentose phosphate pathway in humans. Erythritol is of medical interest because elevated plasma levels of this polyol are predictive for visceral adiposity gain and development of type 2 diabetes. However, the mechanisms behind these associations remain unknown because the erythritol biosynthesis pathway, particularly the enzyme catalyzing the final step of erythritol synthesis (reduction of erythrose to erythritol), is not characterized. In this study, we purified two enzymes from rabbit liver capable of catalyzing the conversion of erythrose to erythritol: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Both recombinant human ADH1 and SORD reduce erythrose to erythritol, using NADPH as a co-factor, and cell culture studies indicate that this activity is primarily NADPH-dependent. We found that ADH1 variants vary markedly in both their affinity for erythrose and their catalytic capacity (turnover number). Interestingly, the recombinant protein produced from the ADH1B2 variant, common in Asian populations, is not active when NADPH is used as a co-factor in vitro We also confirmed SORD contributes to intracellular erythritol production in human A549 lung cancer cells, where ADH1 is minimally expressed. In summary, human ADH1 and SORD catalyze the conversion of erythrose to erythritol, pointing to novel roles for two dehydrogenase proteins in human glucose metabolism that may contribute to individual responses to diet. Proteomics data are available via ProteomeXchange with identifier PXD015178.