Recent Submissions

  • Global mapping ofSalmonella entericahost protein-protein interactions during infection.

    Walch, Philipp; Selkrig, Joel; Knodler, Leigh A; Rettel, Mandy; Stein, Frank; Fernandez, Keith; Viéitez, Cristina; Potel, Clément M; Scholzen, Karoline; Geyer, Matthias; et al. (Cell Press, 2021-07-02)
    Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.
  • Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion.

    Stahnke, Stephanie; Döring, Hermann; Kusch, Charly; de Gorter, David J J; Dütting, Sebastian; Guledani, Aleks; Pleines, Irina; Schnoor, Michael; Sixt, Michael; Geffers, Robert; et al. (Wiley-VCH, 2021-03-11)
    Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
  • Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum Planctomycetes.

    Kallscheuer, Nicolai; Rast, Patrick; Jogler, Mareike; Wiegand, Sandra; Kohn, Timo; Boedeker, Christian; Jeske, Olga; Heuer, Anja; Quast, Christian; Glöckner, Frank Oliver; et al. (Wiley & Sond Ltd., 2021-01-12)
    Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.
  • Call for a pan-European COVID-19 response must be comprehensive - Authors' reply.

    Priesemann, Viola; Brinkmann, Melanie M; Ciesek, Sandra; Cuschieri, Sarah; Czypionka, Thomas; Giordano, Giulia; Hanson, Claudia; Hens, Niel; Iftekhar, Emil; Klimek, Peter; et al. (Elsevier, 2021-04-22)
    No abstract available
  • The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral / Transcripts.

    Gonzalez-Perez, Ana Cristina; Stempel, Markus; Wyler, Emanuel; Urban, Christian; Piras, Antonio; Hennig, Thomas; Ganskih, Sabina; Wei, Yuanjie; Heim, Albert; Landthaler, Markus; et al. (ASM, 2021-05-04)
    Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies.
  • Fed-Batch - Polyhydroxyalkanoates Production in Pseudomonas putida KT2440 and Δ phaZ KT2440 and Δ Mutant on Biodiesel-Derived Crude Glycerol.

    Borrero-de Acuña, José Manuel; Rohde, Manfred; Saldias, Cesar; Poblete-Castro, Ignacio; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-03-16)
    Crude glycerol has emerged as a suitable feedstock for the biotechnological production of various industrial chemicals given its high surplus catalyzed by the biodiesel industry. Pseudomonas bacteria metabolize the polyol into several biopolymers, including alginate and medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs). Although P. putida is a suited platform to derive these polyoxoesters from crude glycerol, the attained concentrations in batch and fed-batch cultures are still low. In this study, we employed P. putida KT2440 and the hyper-PHA producer ΔphaZ mutant in two different fed-batch modes to synthesize mcl-PHAs from raw glycerol. Initially, the cells grew in a batch phase (μ max 0.21 h-1) for 22 h followed by a carbon-limiting exponential feeding, where the specific growth rate was set at 0.1 (h-1), resulting in a cell dry weight (CDW) of nearly 50 (g L-1) at 40 h cultivation. During the PHA production stage, we supplied the substrate at a constant rate of 50 (g h-1), where the KT2440 and the ΔphaZ produced 9.7 and 12.7 gPHA L-1, respectively, after 60 h cultivation. We next evaluated the PHA production ability of the P. putida strains using a DO-stat approach under nitrogen depletion. Citric acid was the main by-product secreted by the cells, accumulating in the culture broth up to 48 (g L-1) under nitrogen limitation. The mutant ΔphaZ amassed 38.9% of the CDW as mcl-PHA and exhibited a specific PHA volumetric productivity of 0.34 (g L-1 h-1), 48% higher than the parental KT2440 under the same growth conditions. The biosynthesized mcl-PHAs had average molecular weights ranging from 460 to 505 KDa and a polydispersity index (PDI) of 2.4-2.6. Here, we demonstrated that the DO-stat feeding approach in high cell density cultures enables the high yield production of mcl-PHA in P. putida strains using the industrial crude glycerol, where the fed-batch process selection is essential to exploit the superior biopolymer production hallmarks of engineered bacterial strains.
  • European Journal of Cell Biology - Editorial.

    Rottner, Klemens; Vicente-Manzanares, Miguel; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-04-20)
    [No abstract available]
  • Filling the Gaps in the Cyanobacterial Tree of Life-Metagenome Analysis of Stigonema ocellatum DSM 106950, SAG 13.99 and DSM 107014.

    Marter, Pia; Huang, Sixing; Brinkmann, Henner; Pradella, Silke; Jarek, Michael; Rohde, Manfred; Bunk, Boyke; Petersen, Jörn; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-03-09)
    Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity of associated heterotrophs. High-throughput Illumina sequencing, metagenomic assembly and binning allowed us to establish nearly complete high-quality draft genomes of all three cyanobacteria and to determine their phylogenetic position. The cyanosphere of the limnic isolates comprises up to 40 heterotrophic bacteria that likely coexisted for several decades, and it is dominated by Alphaproteobacteria and Bacteriodetes. The diagnostic marker protein RpoB ensured in combination with our novel taxonomic assessment via BLASTN-dependent text-mining a reliable classification of the metagenome assembled genomes (MAGs). The detection of one new family and more than a dozen genera of uncultivated heterotrophic bacteria illustrates that non-axenic cyanobacteria are treasure troves of hidden microbial diversity.
  • The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression.

    Hirschmann, Stephanie; Gómez-Mejia, Alejandro; Mäder, Ulrike; Karsunke, Julia; Driesch, Dominik; Rohde, Manfred; Häussler, Susanne; Burchhardt, Gerhard; Hammerschmidt, Sven; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-02-24)
    Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.
  • Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium.

    Fattinger, Stefan A; Böck, Desirée; Di Martino, Maria Letizia; Deuring, Sabrina; Samperio Ventayol, Pilar; Ek, Viktor; Furter, Markus; Kreibich, Saskia; Bosia, Francesco; Müller-Hauser, Anna A; et al. (PLOS, 2020-05-04)
    Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host's gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through "discreet-invasion". This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell-cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context.
  • Targeting bioenergetics is key to counteracting the drug-tolerant state of biofilm-grown bacteria.

    Donnert, Monique; Elsheikh, Sarah; Arce-Rodriguez, Alejandro; Pawar, Vinay; Braubach, Peter; Jonigk, Danny; Haverich, Axel; Weiss, Siegfried; Müsken, Mathias; Häussler, Susanne; et al. (PLOS, 2020-12-22)
    Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell's bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic.
  • Resolution of the Hypoxylon fuscum complex (hypoxylaceae, xylariales) and discovery and biological characterization of two of its prominent secondary metabolites.

    Lambert, Christopher; Pourmoghaddam, Mohammad Javad; Cedeño-Sanchez, Marjorie; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stradal, Theresia E B; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-02-11)
    Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3'-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
  • Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran.

    Safaei, Nasim; Nouioui, Imen; Mast, Yvonne; Zaburannyi, Nestor; Rohde, Manfred; Schumann, Peter; Müller, Rolf; Wink, Joachim; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.;HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Microbiology Society, 2021-01-11)
    Isolate 4NS15T was isolated from a neglected arid habitat in Kerman, Iran. The strain showed 16S rRNA gene sequence similarity values of 98.9 % to the type strains of Kibdelosporangium aridum subsp. aridum, Kibdelosporangium phytohabitans and Kibdelosporangium philippinense and 98.6 % to the type strain K. aridum subsp. largum, respectively. Genome-based phylogenetic analysis revealed that isolate 4NS15T is closely related to Kibdelosporangium aridum subsp. aridum DSM 43828T. The digital DNA-DNA hybridization value between the genome sequences of 4NS15T and strain DSM 43828T is 29.8 %. Strain 4NS15T produces long chains of spores without a sporangium-like structure which can be distinguished from other Kibdelosporangium species. Isolate 4NS15T has a genome size of 10.35 Mbp with a G+C content of 68.1 mol%. Whole-cell hydrolysates of isolate 4NS15T are rich in meso-diaminopimelic acid and cell-wall sugars such as arabinose, galactose, glucose and ribose. Major fatty acids (>10 %) are C16 : 0, iso-C16 : 0 and iso-C15 : 0. The phospholipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine, aminolipid and glycoaminolipid. The predominant menaquinone is MK-9(H4). Based on its phenotypic and genotypic characteristics, isolate 4NS15T (NCCB 100701=CIP 111705=DSM 110728) merits recognition as representing a novel species of the genus Kibdelosporangium, for which the name Kibdelosporangium persicum sp. nov. is proposed.
  • Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation.

    Dimchev, Vanessa; Lahmann, Ines; Koestler, Stefan A; Kage, Frieda; Dimchev, Georgi; Steffen, Anika; Stradal, Theresia E B; Vauti, Franz; Arnold, Hans-Henning; Rottner, Klemens; et al. (Frontiers, 2021-02-01)
    The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.
  • Cell sheet technology: Influence of culture conditions on in vitro-cultivated corneal stromal tissue for regenerative therapies of the ocular surface.

    Hasenzahl, Meike; Müsken, Mathias; Mertsch, Sonja; Schrader, Stefan; Reichl, Stephan; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2021-02-03)
    The in vitro reconstruction of stromal tissue by long-term cultivation of corneal fibroblasts is a smart approach for regenerative therapies of ocular surface diseases. However, systematic investigations evaluating optimized cultivation protocols for the realization of a biomaterial are lacking. This study investigated the influence of supplements to the culture media of human corneal fibroblasts on the formation of a cell sheet consisting of cells and extracellular matrix. Among the supplements studied are vitamin C, fetal bovine serum, L-glutamine, components of collagen such as L-proline, L-4-hydroxyproline and glycine, and TGF-β1, bFGF, IGF-2, PDGF-BB and insulin. After long-term cultivation, the proliferation, collagen and glycosaminoglycan content and light transmission of the cell sheets were examined. Biomechanical properties were investigated by tensile tests and the ultrastructure was characterized by electron microscopy, small-angle X-ray scattering, antibody staining and ELISA. The synthesis of extracellular matrix was significantly increased by cultivation with insulin or TGF-β1, each with vitamin C. The sheets exhibited a high transparency and suitable material properties. The production of a transparent, scaffold-free, potentially autologous, in vitro-generated construct by culturing fibroblasts with extracellular matrix synthesis-stimulating supplements represents a promising approach for a biomaterial that can be used for ocular surface reconstruction in slowly progressing diseases.
  • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

    Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
    Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
  • Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif.

    Wang, Hui; Beier, Nicole; Boedeker, Christian; Sztajer, Helena; Henke, Petra; Neumann-Schaal, Meina; Mansky, Johannes; Rohde, Manfred; Overmann, Jörg; Petersen, Jörn; et al. (American Society for Microbiology, 2021-01-12)
    Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions.IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
  • Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model.

    Vötsch, Désirée; Willenborg, Maren; Baumgärtner, Wolfgang; Rohde, Manfred; Valentin-Weigand, Peter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2020-12-29)
    Bordetella (B.) bronchiseptica and Streptococcus (S.) suis are major pathogens in pigs, which are frequently isolated from co-infections in the respiratory tract and contribute to the porcine respiratory disease complex (PRDC). Despite the high impact of co-infections on respiratory diseases of swine (and other hosts), very little is known about pathogen-pathogen-host interactions and the mechanisms of pathogenesis. In the present study, we established a porcine precision-cut lung slice (PCLS) model to analyze the effects of B. bronchiseptica infection on adherence, colonization, and cytotoxic effects of S. suis. We hypothesized that induction of ciliostasis by a clinical isolate of B. bronchiseptica may promote subsequent infection with a virulent S. suis serotype 2 strain. To investigate this theory, we monitored the ciliary activity by light microscopy, measured the release of lactate dehydrogenase, and calculated the number of PCLS-associated bacteria. To study the role of the pore-forming toxin suilysin (SLY) in S. suis-induced cytotoxicity, we included a SLY-negative isogenic mutant and the complemented mutant strain. Furthermore, we analyzed infected PCLS by histopathology, immunofluorescence microscopy, and field emission scanning electron microscopy. Our results showed that pre-infection with B. bronchiseptica promoted adherence, colonization, and, as a consequence of the increased colonization, the cytotoxic effects of S. suis, probably by reduction of the ciliary activity. Moreover, cytotoxicity induced by S. suis is strictly dependent on the presence of SLY. Though the underlying molecular mechanisms remain to be fully clarified, our results clearly support the hypothesis that B. bronchiseptica paves the way for S. suis infection.
  • Draft Genome Sequence of the Urinary Catheter Isolate Enterobacter ludwigii CEB04 with High Biofilm Forming Capacity.

    Shafeeq, Sulman; Wang, Xiaoda; Lünsdorf, Heinrich; Brauner, Annelie; Römling, Ute; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-04-05)
    :Enterobacter ludwigii is a fermentative Gram-negative environmental species and accidental human pathogen that belongs to the Enterobacter cloacae complex with the general characteristics of the genus Enterobacter. The clinical isolate E. ludwigii CEB04 was derived from a urinary tract catheter of an individual not suffering from catheter-associated urinary tract infection. The draft genome sequence of the high biofilm forming E. ludwigii CEB04 was determined by PacBio sequencing. The chromosome of E. ludwigii CEB04 is comprised of one contig of 4,892,375 bps containing 4596 predicted protein-coding genes and 120 noncoding RNAs. E. ludwigii CEB04 harbors several antimicrobial resistance markers and has an extended cyclic-di-GMP signaling network compared to Escherichia coli K-12.
  • Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class in the Phylum Planctomycetes.

    Kallscheuer, Nicolai; Wiegand, Sandra; Kohn, Timo; Boedeker, Christian; Jeske, Olga; Rast, Patrick; Müller, Ralph-Walter; Brümmer, Franz; Heuer, Anja; Jetten, Mike S M; et al. (Frontiers, 2020-12-22)
    Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.

View more