• Actin assembly mechanisms at a glance.

      Rottner, Klemens; Faix, Jan; Bogdan, Sven; Linder, Stefan; Kerkhoff, Eugen; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-10-15)
      The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
    • Actin dynamics in cell migration

      Schaks, Matthias; Giannone, Grégory; Rottner, Klemens; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Portland Press Ltd., 2019-09-24)
      Cell migration is an essential process, both in unicellular organisms such as amoeba and as individual or collective motility in highly developed multicellular organisms like mammals. It is controlled by a variety of activities combining protrusive and contractile forces, normally generated by actin filaments. Here, we summarize actin filament assembly and turnover processes, and how respective biochemical activities translate into different protrusion types engaged in migration. These actin-based plasma membrane protrusions include actin-related protein 2/3 complex-dependent structures such as lamellipodia and membrane ruffles, filopodia as well as plasma membrane blebs. We also address observed antagonisms between these protrusion types, and propose a model – also inspired by previous literature – in which a complex balance between specific Rho GTPase signaling pathways dictates the protrusion mechanism employed by cells. Furthermore, we revisit published work regarding the fascinating antagonism between Rac and Rho GTPases, and how this intricate signaling network can define cell behavior and modes of migration. Finally, we discuss how the assembly of actin filament networks can feed back onto their regulators, as exemplified for the lamellipodial factor WAVE regulatory complex, tightly controlling accumulation of this complex at specific subcellular locations as well as its turnover.
    • Actin dynamics in host-pathogen interaction.

      Stradal, Theresia E B; Schelhaas, Mario; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-23)
      The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen-induced or -hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
    • Actin-binding protein cortactin promotes pathogenesis of experimental autoimmune encephalomyelitis by supporting leukocyte infiltration into the central nervous system.

      Samus, Maryna; Li, Yu-Tung; Sorokin, Lydia; Rottner, Klemens; Vestweber, Dietmar; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Society for Neuroscience, 2020-01-06)
      Leukocyte entry into the central nervous system (CNS) is essential for immune surveillance, but is also the basis for the development of pathologic inflammatory conditions within the CNS such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The actin-binding protein, cortactin, in endothelial cells is an important player in regulating the interaction of immune cells with the vascular endothelium. Cortactin has been shown to control the integrity of the endothelial barrier and to support neutrophil transendothelial migration in vitro and in vivo in the skin. Here we employ cortactin gene inactivated (cortactin--/--) male and female mice to study the role of this protein in EAE. Inducing EAE by immunization with a myelin oligodendrocyte glycoprotein peptide (MOG35-55) revealed an ameliorated disease course in cortactin--/-- female mice compared to WT mice. However, proliferation capacity and expression of IL-17A and IFNγ by cortactin-deficient and wildtype splenocytes did not differ, suggesting that the lack of cortactin does not affect induction of the immune response. Rather, cortactin deficiency caused decreased vascular permeability and reduced leukocyte infiltration into the brains and spinal cords of EAE mice. Accordingly, cortactin gene-deficient mice had smaller numbers of proinflammatory cuffs, less extensive demyelination and reduced expression levels of proinflammatory cytokines within the neural tissue compared to wildtype littermates. Thus, cortactin contributes to the development of neural inflammation by supporting leukocyte transmigration through the blood-brain barrier and, therefore, represents a potential candidate for targeting CNS autoimmunity.SIGNIFICANCE STATEMENTMultiple sclerosis (MS) is an autoimmune neuroinflammatory disorder, based on the entry of inflammatory leukocytes into the central nervous system (CNS) where these cells cause demyelination and neurodegeneration. Here, we use a mouse model for MS, experimental autoimmune encephalomyelitis (EAE), and show that gene inactivation of cortactin, an actin binding protein that modulates actin dynamics and branching, protects against neuroinflammation in EAE. Leukocyte infiltration into the CNS was inhibited in cortactin deficient mice and lack of cortactin in cultured primary brain endothelial cells inhibited leukocyte transmigration. Expression levels of proinflammatory cytokines in the CNS and induction of vascular permeability were reduced. We conclude that cortactin represents a novel potential target for the treatment of MS.
    • Age-dependent enterocyte invasion and microcolony formation by Salmonella.

      Zhang, Kaiyi; Dupont, Aline; Torow, Natalia; Gohde, Fredrik; Leschner, Sara; Lienenklaus, Stefan; Weiss, Siegfried; Brinkmann, Melanie M; Kühnel, Mark; Hensel, Michael; et al. (2014-09)
      The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo.
    • Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil.

      Huber, Katharina J; Wüst, Pia K; Rohde, Manfred; Overmann, Jörg; Foesel, Bärbel U; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-06)
      Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4H(T) and Ac_23_E3(T) were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4H(T) and Ac_23_E3(T) were aerobic mesophiles with a broad range of tolerance towards pH (4.0-9.5 and 3.5-10.0, respectively) and temperature (15-44 and 12-47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4H(T) and Ac_23_E3(T) were iso-C(15 : 0), summed feature 1 (C(13 : 0) 3-OH/iso-C(15 : 1) H), summed feature 3 (C(16 : 1)ω7c/C(16 : 1)ω6c) and anteiso-C(17 : 0). The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4H(T) and Ac_23_E3(T) were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16(T), with 16S rRNA gene sequence identity of 93.2 and 93.3%, respectively. Strains A22_HD_4H(T) and Ac_23_E3(T) displayed 16S rRNA gene sequence similarity of 97.4% to each other. On the basis of the low DNA-DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4H(T) = DSM 26555(T) = LMG 27985(T)) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3(T) = DSM 26558(T) = LMG 27597(T)).
    • Assembling actin filaments for protrusion.

      Rottner, Klemens; Schaks, Matthias; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-29)
      Cell migration entails a plethora of activities combining the productive exertion of protrusive and contractile forces to allow cells to push and squeeze themselves through cell clumps, interstitial tissues or tissue borders. All these activities require the generation and turnover of actin filaments that arrange into specific, subcellular structures. The most prominent structures mediating the protrusion at the leading edges of cells include lamellipodia and filopodia as well as plasma membrane blebs. Moreover, in cells migrating on planar substratum, mechanical support is being provided by an additional, more proximally located structure termed the lamella. Here, we systematically dissect the literature concerning the mechanisms driving actin filament nucleation and elongation in the best-studied protrusive structure, the lamellipodium. Recent work has shed light on open questions in lamellipodium protrusion, including the relative contributions of nucleation versus elongation to the assembly of both individual filaments and the lamellipodial network as a whole. However, much remains to be learned concerning the specificity and relevance of individual factors, their cooperation and their site-specific functions relative to the importance of global actin monomer and filament homeostasis.
    • Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens

      Lin, Leo; Nonejuie, Poochit; Munguia, Jason; Hollands, Andrew; Olson, Joshua; Dam, Quang; Kumaraswamy, Monika; Rivera, Heriberto; Corriden, Ross; Rohde, Manfred; et al. (2015-06)
    • Bacterial microcompartment-directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli.

      Liang, Mingzhi; Frank, Stefanie; Lünsdorf, Heinrich; Warren, Martin J; Prentice, Michael B; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2017-03-01)
      Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate-synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co-expression of E. coli PPK1 fused with a microcompartment-targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8-fold compared with non-targeted PPK1. Co-expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co-expression of PPX with non-targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.
    • Belliella kenyensis sp. nov., isolated from an alkaline lake.

      Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Klenk, Hans-Peter; Boga, Hamadi Iddi; Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 7 38124 Braunschweig, Germany. (2015-02)
      A red-pigmented, Gram-reaction-negative, aerobic bacterial strain, designated No.164(T), was isolated from sediment sample from the alkaline Lake Elmenteita located in the Kenyan Rift Valley. Results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Belliella, with the highest sequence similarity (97 %) to Belliella pelovolcani DSM 46698(T). Optimal growth temperature was 30-35 °C, at pH 7.0-12.0 in the presence of 0-4 % (w/v) NaCl. Flexirubins were absent. The respiratory menaquinone (MK-7), predominant cellular fatty acids (iso-C15 : 0, anteiso-C15 : 0 and a mixture of C16 : 1ω7c and/or iso-C15 : 0 2-OH) and DNA G+C content (38.1 mol%) of strain No.164(T) were consistent with those of other members of the genus Belliella. The polar lipids consisted of phosphatidylethanolamine, eight unspecified lipids and one unspecified phospholipid. Several phenotypic characteristics can be used to differentiate this isolate from those of other species of the genus Belliella. The results of polyphasic analyses presented in this study indicated that this isolate should be classified as representing a novel species of the genus Belliella. The name Belliella kenyensis sp. nov. is therefore proposed; the type strain is strain No.164(T) ( = DSM 46651(T) = CECT 8551(T)).
    • Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments.

      Golyshina, Olga V; Kublanov, Ilya V; Tran, Hai; Korzhenkov, Alexei A; Lünsdorf, Heinrich; Nechitaylo, Taras Y; Gavrilov, Sergey N; Toshchakov, Stepan V; Golyshin, Peter N; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-12-14)
      The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed 'G-plasma'. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1-1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with 'G-plasma'. Organisms had largest genomes among Thermoplasmatales (1.87-1.94 Mbp), that shared 98.7-98.8% average nucleotide identities between themselves and 'G-plasma' and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.
    • Characterization of Five Zoonotic Streptococcus suis Strains from Germany, Including One Isolate from a Recent Fatal Case of Streptococcal Toxic Shock-Like Syndrome in a Hunter.

      Eisenberg, Tobias; Hudemann, Christoph; Hossain, Hamid M; Hewer, Angela; Tello, Khodr; Bandorski, Dirk; Rohde, M; Valentin-Weigand, Peter; Baums, Christoph Georg; Infectious Diseases, College of Veterinary Medicine, University Leipzig, Leipzig. (2015-12)
      A Streptococcus suis isolate from a German hunter with streptococcal toxic shock-like syndrome (STSLS) and four additional zoonotic isolates were genotyped as mrp(+) epf* (variant 1890) sly(+) cps2(+). All five zoonotic German strains were characterized by high multiplication in human blood samples ex vivo, but induction of only low levels of proinflammatory cytokines compared to a Chinese STSLS strain.
    • Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum.

      Spring, Stefan; Bunk, Boyke; Spröer, Cathrin; Schumann, Peter; Rohde, M; Tindall, Brian J; Klenk, Hans-Peter; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      The recently isolated strain L21-Fru-ABTrepresents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-ABTrepresents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate. On the basis of the analyses of phenotypic, genomic and environmental data, it is proposed that strain L21-Fru-ABTand related bacteria are specifically adapted to the utilization of sulfated glycopolymers produced in microbial mats or biofilms.
    • Comparative genomic analysis of eight novel haloalkaliphilic bacteriophages from Lake Elmenteita, Kenya.

      Akhwale, Juliah Khayeli; Rohde, M; Rohde, Christine; Bunk, Boyke; Spröer, Cathrin; Klenk, Hans-Peter; Boga, Hamadi Iddi; Wittmann, Johannes; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (PLOS, 2019-01-01)
      We report complete genome sequences of eight bacteriophages isolated from Haloalkaline Lake Elmenteita found on the floor of Kenyan Rift Valley. The bacteriophages were sequenced, annotated and a comparative genomic analysis using various Bioinformatics tools carried out to determine relatedness of the bacteriophages to each other, and to those in public databases. Basic genome properties like genome size, percentage coding density, number of open reading frames, percentage GC content and gene organizations revealed the bacteriophages had no relationship to each other. Comparison to other nucleotide sequences in GenBank database showed no significant similarities hence novel. At the amino acid level, phages of our study revealed mosaicism to genes with conserved domains to already described phages. Phylogenetic analyses of large terminase gene responsible for DNA packaging and DNA polymerase gene for replication further showed diversity among the bacteriophages. Our results give insight into diversity of bacteriophages in Lake Elmenteita and provide information on their evolution. By providing primary sequence information, this study not only provides novel sequences for biotechnological exploitation, but also sets stage for future studies aimed at better understanding of virus diversity and genomes from haloalkaline lakes in the Rift Valley.
    • Comparing polysaccharide decomposition between the type strains Gramella echinicola KMM 6050(T) (DSM 19838(T)) and Gramella portivictoriae UST040801-001(T) (DSM 23547(T)), and emended description of Gramella echinicola Nedashkovskaya et al. 2005 emend. Shahina et al. 2014 and Gramella portivictoriae Lau et al. 2005.

      Panschin, Irina; Huang, Sixing; Meier-Kolthoff, Jan P; Tindall, Brian J; Rohde, Manfred; Verbarg, Susanne; Lapidus, Alla; Han, James; Trong, Stephan; Haynes, Matthew; et al. (2016)
      Strains of the genus Gramella (family Flavobacteriacae, phylum Bacteroidetes) were isolated from marine habitats such as tidal flat sediments, coastal surface seawater and sea urchins. Flavobacteriaceae have been shown to be involved in the decomposition of plant and algal polysaccharides. However, the potential to decompose polysaccharides may differ tremendously even between species of the same genus. Gramella echinicola KMM 6050(T) (DSM 19838(T)) and Gramella portivictoriae UST040801-001(T) (DSM 23547(T)) have genomes of similar lengths, similar numbers of protein coding genes and RNA genes. Both genomes encode for a greater number of peptidases compared to 'G. forsetii'. In contrast to the genome of 'G. forsetii', both genomes comprised a smaller set of CAZymes. Seven polysaccharide utilization loci were identified in the genomes of DSM 19838(T) and DSM 23547(T). Both Gramella strains hydrolyzed starch, galactomannan, arabinoxylan and hydroxyethyl-cellulose, but not pectin, chitosan and cellulose (Avicel). Galactan and xylan were hydrolyzed by strain DSM 19838(T), whereas strain DSM 23547(T) hydrolyzed pachyman and carboxy-methyl cellulose. Conclusively, both Gramella type strains exhibit characteristic physiological, morphological and genomic differences that might be linked to their habitat. Furthermore, the identified enzymes mediating polysaccharide decomposition, are of biotechnological interest.
    • Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

      Poblete-Castro, Ignacio; Binger, Danielle; Oehlert, Rene; Rohde, Manfred; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014)
      Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source.
    • Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat.

      Ben Hania, Wajdi; Joseph, Manon; Schumann, Peter; Bunk, Boyke; Fiebig, Anne; Spröer, Cathrin; Klenk, Hans-Peter; Fardeau, Marie-Laure; Spring, Stefan; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      During a study of the anaerobic microbial community of a lithifying hypersaline microbial mat of Lake 21 on the Kiritimati atoll (Kiribati Republic, Central Pacific) strain L21-RPul-D2(T) was isolated. The closest phylogenetic neighbor was Spirochaeta africana Z-7692(T) that shared a 16S rRNA gene sequence identity value of 90% with the novel strain and thus was only distantly related. A comprehensive polyphasic study including determination of the complete genome sequence was initiated to characterize the novel isolate. Cells of strain L21-RPul-D2(T) had a size of 0.2 - 0.25 × 8-9 μm, were helical, motile, stained Gram-negative and produced an orange carotenoid-like pigment. Optimal conditions for growth were 35°C, a salinity of 50 g/l NaCl and a pH around 7.0. Preferred substrates for growth were carbohydrates and a few carboxylic acids. The novel strain had an obligate fermentative metabolism and produced ethanol, acetate, lactate, hydrogen and carbon dioxide during growth on glucose. Strain L21-RPul-D2(T) was aerotolerant, but oxygen did not stimulate growth. Major cellular fatty acids were C14:0, iso-C15:0, C16:0 and C18:0. The major polar lipids were an unidentified aminolipid, phosphatidylglycerol, an unidentified phospholipid and two unidentified glycolipids. Whole-cell hydrolysates contained L-ornithine as diagnostic diamino acid of the cell wall peptidoglycan. The complete genome sequence was determined and annotated. The genome comprised one circular chromosome with a size of 3.78 Mbp that contained 3450 protein-coding genes and 50 RNA genes, including 2 operons of ribosomal RNA genes. The DNA G + C content was determined from the genome sequence as 51.9 mol%. There were no predicted genes encoding cytochromes or enzymes responsible for the biosynthesis of respiratory lipoquinones. Based on significant differences to the uncultured type species of the genus Spirochaeta, S. plicatilis, as well as to any other phylogenetically related cultured species it is suggested to place strain L21-RPul-D2(T) (=DSM 27196(T) = JCM 18663(T)) in a novel species and genus, for which the name Salinispira pacifica gen. nov., sp. nov. is proposed.
    • Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains.

      Sváb, Domonkos; Falgenhauer, Linda; Rohde, M; Chakraborty, Trinad; Tóth, István; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-20)
      The genome sequence of a novel virulent bacteriophage, named " C130_2", that is morphologically a member of the family Myoviridae is reported. The 41,775-base-pair double-stranded DNA genome of C130_2 contains 59 ORFs but exhibits overall low sequence similarity to bacteriophage genomes for which sequences are publicly available. Phylogenetic analysis indicated that C130_2 represents a new phage type. C130_2 could be propagated well on enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other pathogenic E. coli strains, as well as on strains of various Shigella species.
    • Complete genome sequence of Coriobacterium glomerans type strain (PW2T) from the midgut of Pyrrhocoris apterus L. (red soldier bug)

      Stackebrandt, Erko; Zeytun, Ahmet; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; et al. (2014-01-09)
    • Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy.

      Meier-Kolthoff, Jan P; Hahnke, Richard L; Petersen, Jörn; Scheuner, Carmen; Michael, Victoria; Fiebig, Anne; Rohde, Christine; Rohde, Manfred; Fartmann, Berthold; Goodwin, Lynne A; et al. (2014)
      Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083(T) together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083(T) in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.