Show simple item record

dc.contributor.authorXiong, Qiuhong
dc.contributor.authorÜnal, Can
dc.contributor.authorMatthias, Jan
dc.contributor.authorSteinert, Michael
dc.contributor.authorEichinger, Ludwig
dc.date.accessioned2015-07-03T13:49:35Zen
dc.date.available2015-07-03T13:49:35Zen
dc.date.issued2015-04en
dc.identifier.citationThe phenotypes of ATG9, ATG16 and ATG9/16 knock-out mutants imply autophagy-dependent and -independent functions. 2015, 5 (4):150008 Open Biolen
dc.identifier.issn2046-2441en
dc.identifier.pmid25878144en
dc.identifier.doi10.1098/rsob.150008en
dc.identifier.urihttp://hdl.handle.net/10033/558827en
dc.description.abstractMacroautophagy is a highly conserved intracellular bulk degradation system of all eukaryotic cells. It is governed by a large number of autophagy proteins (ATGs) and is crucial for many cellular processes. Here, we describe the phenotypes of Dictyostelium discoideum ATG16(-) and ATG9(-)/16(-) cells and compare them to the previously reported ATG9(-) mutant. ATG16 deficiency caused an increase in the expression of several core autophagy genes, among them atg9 and the two atg8 paralogues. The single and double ATG9 and ATG16 knock-out mutants had complex phenotypes and displayed severe and comparable defects in pinocytosis and phagocytosis. Uptake of Legionella pneumophila was reduced. In addition, ATG9(-) and ATG16(-) cells had dramatic defects in autophagy, development and proteasomal activity which were much more severe in the ATG9(-)/16(-) double mutant. Mutant cells showed an increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates which partially co-localized with ATG16-GFP in ATG9(-)/16(-) cells. The more severe autophagic, developmental and proteasomal phenotypes of ATG9(-)/16(-) cells imply that ATG9 and ATG16 probably function in parallel in autophagy and have in addition autophagy-independent functions in further cellular processes.
dc.language.isoenen
dc.titleThe phenotypes of ATG9, ATG16 and ATG9/16 knock-out mutants imply autophagy-dependent and -independent functions.en
dc.typeArticleen
dc.contributor.departmentHelmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.en
dc.identifier.journalOpen biologyen
refterms.dateFOA2018-06-13T05:41:17Z
html.description.abstractMacroautophagy is a highly conserved intracellular bulk degradation system of all eukaryotic cells. It is governed by a large number of autophagy proteins (ATGs) and is crucial for many cellular processes. Here, we describe the phenotypes of Dictyostelium discoideum ATG16(-) and ATG9(-)/16(-) cells and compare them to the previously reported ATG9(-) mutant. ATG16 deficiency caused an increase in the expression of several core autophagy genes, among them atg9 and the two atg8 paralogues. The single and double ATG9 and ATG16 knock-out mutants had complex phenotypes and displayed severe and comparable defects in pinocytosis and phagocytosis. Uptake of Legionella pneumophila was reduced. In addition, ATG9(-) and ATG16(-) cells had dramatic defects in autophagy, development and proteasomal activity which were much more severe in the ATG9(-)/16(-) double mutant. Mutant cells showed an increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates which partially co-localized with ATG16-GFP in ATG9(-)/16(-) cells. The more severe autophagic, developmental and proteasomal phenotypes of ATG9(-)/16(-) cells imply that ATG9 and ATG16 probably function in parallel in autophagy and have in addition autophagy-independent functions in further cellular processes.


Files in this item

Thumbnail
Name:
Xiong et al_final.pdf
Size:
1.112Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record