• Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity.

      Lukat, Peer; Katsuyama, Yohei; Wenzel, Silke; Binz, Tina; König, Claudia; Blankenfeldt, Wulf; Brönstrup, Mark; Müller, Rolf; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-11-01)
      Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction.
    • Crystal structure of -aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis.

      Chen, Fangfang; Lukat, Peer; Iqbal, Azeem Ahmed; Saile, Kyrill; Kaever, Volkhard; van den Heuvel, Joop; Blankenfeldt, Wulf; Büssow, Konrad; Pessler, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (National Academy of Sciences, 2019-09-23)
      cis-Aconitate decarboxylase (CAD, also known as ACOD1 or Irg1) converts cis-aconitate to itaconate and plays central roles in linking innate immunity with metabolism and in the biotechnological production of itaconic acid by Aspergillus terreus We have elucidated the crystal structures of human and murine CADs and compared their enzymological properties to CAD from A. terreus Recombinant CAD is fully active in vitro without a cofactor. Murine CAD has the highest catalytic activity, whereas Aspergillus CAD is best adapted to a more acidic pH. CAD is not homologous to any known decarboxylase and appears to have evolved from prokaryotic enzymes that bind negatively charged substrates. CADs are homodimers, the active center is located in the interface between 2 distinct subdomains, and structural modeling revealed conservation in zebrafish and Aspergillus We identified 8 active-site residues critical for CAD function and rare naturally occurring human mutations in the active site that abolished CAD activity, as well as a variant (Asn152Ser) that increased CAD activity and is common (allele frequency 20%) in African ethnicity. These results open the way for 1) assessing the potential impact of human CAD variants on disease risk at the population level, 2) developing therapeutic interventions to modify CAD activity, and 3) improving CAD efficiency for biotechnological production of itaconic acid.
    • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

      Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
      Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
    • Protein-Templated Hit Identification through an Ugi Four-Component Reaction.

      Mancini, Federica; Unver, M Yagiz; Elgaher, Walid A M; Jumde, Varsha R; Alhayek, Alaa; Lukat, Peer; Herrmann, Jennifer; Witte, Martin D; Köck, Matthias; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2020-05-19)
    • Reproducible and Easy Production of Mammalian Proteins by Transient Gene Expression in High Five Insect Cells.

      Schubert, Maren; Nimtz, Manfred; Bertoglio, Federico; Schmelz, Stefan; Lukat, Peer; van den Heuvel, Joop; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2021-05-21)
      he expression of mammalian recombinant proteins in insect cell lines using transient-plasmid-based gene expression enables the production of high-quality protein samples. Here, the procedure for virus-free transient gene expression (TGE) in High Five insect cells is described in detail. The parameters that determine the efficiency and reproducibility of the method are presented in a robust protocol for easy implementation and set-up of the method. The applicability of the TGE method in High Five cells for proteomic, structural, and functional analysis of the expressed proteins is shown.