• Exchange of amino acids in the H1-haemagglutinin to H3 residues is required for efficient influenza A virus replication and pathology in Tmprss2 knock-out mice.

      Lambertz, Ruth L O; Pippel, Jan; Gerhauser, Ingo; Kollmus, Heike; Anhlan, Darisuren; Hrincius, Eike R; Krausze, Joern; Kühn, Nora; Schughart, Klaus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-01)
      The haemagglutinin (HA) of H1N1 and H3N2 influenza A virus (IAV) subtypes has to be activated by host proteases. Previous studies showed that H1N1 virus cannot replicate efficiently in Tmprss2/ knock-out mice whereas H3N2 viruses are able to replicate to the same levels in Tmprss2/ as in wild type (WT) mice. Here, we investigated the sequence requirements for the HA molecule that allow IAV to replicate efficiently in the absence of TMPRSS2. We showed that replacement of the H3 for the H1-loop sequence (amino acids 320 to 329, at the C-terminus of HA1) was not sufficient for equal levels of virus replication or severe pathology in Tmprss2/ knock-out mice compared to WT mice. However, exchange of a distant amino acid from H1 to H3 sequence (E31D) in addition to the HA-loop substitution resulted in virus replication in Tmprss2/ knockout mice that was comparable to WT mice. The higher virus replication and lung damage was associated with increased epithelial damage and higher mortality. Our results provide further evidence and insights into host proteases as a promising target for therapeutic intervention of IAV infections.
    • TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1.

      Zmora, Pawel; Hoffmann, Markus; Kollmus, Heike; Moldenhauer, Anna-Sophie; Danov, Olga; Braun, Armin; Winkler, Michael; Schughart, Klaus; Pöhlmann, Stefan; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-07)
      The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors.