• Crystal structures and protein engineering of three different penicillin G acylases from Gram-positive bacteria with different thermostability.

      Mayer, Janine; Pippel, Jan; Günther, Gabriele; Müller, Carolin; Lauermann, Anna; Knuuti, Tobias; Blankenfeldt, Wulf; Jahn, Dieter; Biedendieck, Rebekka; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-06-21)
      Penicillin G acylase (PGA) catalyzes the hydrolysis of penicillin G to 6-aminopenicillanic acid and phenylacetic acid, which provides the precursor for most semisynthetic penicillins. Most applications rely on PGAs from Gram-negative bacteria. Here we describe the first three crystal structures for PGAs from Gram-positive Bacilli and their utilization in protein engineering experiments for the manipulation of their thermostability. PGAs from Bacillus megaterium (BmPGA, Tm = 56.0 °C), Bacillus thermotolerans (BtPGA, Tm = 64.5 °C), and Bacillus sp. FJAT-27231 (FJAT-PGA, Tm = 74.3 °C) were recombinantly produced with B. megaterium, secreted, purified to apparent heterogeneity, and crystallized. Structures with resolutions of 2.20 Å (BmPGA), 2.27 Å (BtPGA), and 1.36 Å (FJAT-PGA) were obtained. They revealed high overall similarity, reflecting the high identity of up to approx. 75%. Notably, the active center displays a deletion of more than ten residues with respect to PGAs from Gram-negatives. This enlarges the substrate binding site and may indicate a different substrate spectrum. Based on the structures, ten single-chain FJAT-PGAs carrying artificial linkers were produced. However, in all cases, complete linker cleavage was observed. While thermostability remained in the wild-type range, the enzymatic activity dropped between 30 and 60%. Furthermore, four hybrid PGAs carrying subunits from two different enzymes were successfully produced. Their thermostabilities mostly lay between the values of the two mother enzymes. For one PGA increased, enzyme activity was observed. Overall, the three novel PGA structures combined with initial protein engineering experiments provide the basis for establishment of new PGA-based biotechnological processes.
    • Molecular Mechanisms of Vaspin Action - From Adipose Tissue to Skin and Bone, from Blood Vessels to the Brain.

      Weiner, Juliane; Zieger, Konstanze; Pippel, Jan; Heiker, John T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-01-01)
      Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that were specifically expressed or overexpressed in the intra-abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and -glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes.The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain.