• Mechanisms and Specificity of Phenazine Biosynthesis Protein PhzF.

      Diederich, Christina; Leypold, Mario; Culka, Martin; Weber, Hansjörg; Breinbauer, Rolf; Ullmann, G Matthias; Blankenfeldt, Wulf; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-24)
      Phenazines are bacterial virulence and survival factors with important roles in infectious disease. PhzF catalyzes a key reaction in their biosynthesis by isomerizing (2 S,3 S)-2,3-dihydro-3-hydroxy anthranilate (DHHA) in two steps, a [1,5]-hydrogen shift followed by tautomerization to an aminoketone. While the [1,5]-hydrogen shift requires the conserved glutamate E45, suggesting acid/base catalysis, it also shows hallmarks of a sigmatropic rearrangement, namely the suprafacial migration of a non-acidic proton. To discriminate these mechanistic alternatives, we employed enzyme kinetic measurements and computational methods. Quantum mechanics/molecular mechanics (QM/MM) calculations revealed that the activation barrier of a proton shuttle mechanism involving E45 is significantly lower than that of a sigmatropic [1,5]-hydrogen shift. QM/MM also predicted a large kinetic isotope effect, which was indeed observed with deuterated substrate. For the tautomerization, QM/MM calculations suggested involvement of E45 and an active site water molecule, explaining the observed stereochemistry. Because these findings imply that PhzF can act only on a limited substrate spectrum, we also investigated the turnover of DHHA derivatives, of which only O-methyl and O-ethyl DHHA were converted. Together, these data reveal how PhzF orchestrates a water-free with a water-dependent step. Its unique mechanism, specificity and essential role in phenazine biosynthesis may offer opportunities for inhibitor development.
    • Molecular Mechanisms of Vaspin Action - From Adipose Tissue to Skin and Bone, from Blood Vessels to the Brain.

      Weiner, Juliane; Zieger, Konstanze; Pippel, Jan; Heiker, John T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-01-01)
      Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that were specifically expressed or overexpressed in the intra-abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and -glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes.The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain.
    • NAD(H)-mediated tetramerization controls the activity of phospholipase PlaB.

      Diwo, Maurice; Michel, Wiebke; Aurass, Philipp; Kuhle-Keindorf, Katja; Pippel, Jan; Krausze, Joern; Wamp, Sabrina; Lang, Christina; Blankenfeldt, Wulf; Flieger, Antje; et al. (National Academy of Sciences, 2021-06-01)
      The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/β-hydrolase domain expanded by two noncanonical two-stranded β-sheets, β-6/β-7 and β-9/β-10. The C-terminal domain reveals a fold displaying a bilobed β-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δβ-9/β-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
    • A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms

      Schütz, Christian; Ho, Duy‐Khiet; Hamed, Mostafa Mohamed; Abdelsamie, Ahmed Saad; Röhrig, Teresa; Herr, Christian; Kany, Andreas Martin; Rox, Katharina; Schmelz, Stefan; Siebenbürger, Lorenz; et al. (Wiley and Sons Inc., 2021-03-18)
      Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) – a crucial transcriptional regulator serving major functions in PA virulence – can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry‐driven hit‐to‐lead optimization and in‐depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter‐gene with IC50 values as low as 200 and 11 × 10−9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI‐tobramycin (Tob) combination against PA biofilms using a tailor‐made squalene‐derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32‐fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker‐mediated therapy against PA infections opening up avenues for preclinical development.
    • The N‐terminal peptide of the transglutaminase‐activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross‐linking sites

      Juettner, Norbert E.; Schmelz, Stefan; Anderl, Anita; Colin, Felix; Classen, Moritz; Pfeifer, Felicitas; Scrima, Andrea; Fuchsbauer, Hans‐Lothar; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2019-08-29)
      Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (http://www.rcsb.org).
    • Oligomerization inhibits Legionella pneumophila PlaB phospholipase A activity.

      Kuhle, Katja; Krausze, Joern; Curth, Ute; Rössle, Manfred; Heuner, Klaus; Lang, Christina; Flieger, Antje (2014-07-04)
      The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 μm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.
    • Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and enantioselectivity.

      Solarczek, Jennifer; Klünemann, Thomas; Brandt, Felix; Schrepfer, Patrick; Wolter, Mario; Jacob, Christoph R; Blankenfeldt, Wulf; Schallmey, Anett; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature publishing group, 2019-03-25)
      HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral β-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications. In an attempt to thermostabilize HheG by protein engineering, several single mutants at position 123 were identified which displayed up to 14 °C increased apparent melting temperatures and up to three-fold higher activity. Aromatic amino acids at position 123 resulted even in a slightly higher enantioselectivity. Crystal structures of variants T123W and T123G revealed a flexible loop opposite to amino acid 123. In variant T123G, this loop adopted two different positions resulting in an open or partially closed active site. Classical molecular dynamics simulations confirmed a high mobility of this loop. Moreover, in variant T123G this loop adopted a position much closer to residue 123 resulting in denser packing and increased buried surface area. Our results indicate an important role for position 123 in HheG and give first structural and mechanistic insight into the thermostabilizing effect of mutations T123W and T123G.
    • Protein-Templated Hit Identification through an Ugi Four-Component Reaction.

      Mancini, Federica; Unver, M Yagiz; Elgaher, Walid A M; Jumde, Varsha R; Alhayek, Alaa; Lukat, Peer; Herrmann, Jennifer; Witte, Martin D; Köck, Matthias; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2020-05-19)
    • Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases

      Poppe, Juliane; Reichelt, Joachim; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-21)
      Pyoverdines (PVDs) are important chromophore-containing siderophores of fluorescent pseudomonad bacteria such as the opportunistic human pathogen
    • Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products.

      Guttenberger, Nikolaus; Blankenfeldt, Wulf; Breinbauer, Rolf; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-11-15)
      Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
    • Reproducible and Easy Production of Mammalian Proteins by Transient Gene Expression in High Five Insect Cells.

      Schubert, Maren; Nimtz, Manfred; Bertoglio, Federico; Schmelz, Stefan; Lukat, Peer; van den Heuvel, Joop; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2021-05-21)
      he expression of mammalian recombinant proteins in insect cell lines using transient-plasmid-based gene expression enables the production of high-quality protein samples. Here, the procedure for virus-free transient gene expression (TGE) in High Five insect cells is described in detail. The parameters that determine the efficiency and reproducibility of the method are presented in a robust protocol for easy implementation and set-up of the method. The applicability of the TGE method in High Five cells for proteomic, structural, and functional analysis of the expressed proteins is shown.
    • Side effects of chaperone gene co-expression in recombinant protein production

      Martínez-Alonso, Mónica; García-Fruitós, Elena; Ferrer-Miralles, Neus; Rinas, Ursula; Villaverde, Antonio (2010-09-02)
      Abstract Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.
    • Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

      Böldicke, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-Blackwell, 2017-01-01)
      Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant‐ and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell‐penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell‐specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb‐DNA or –protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic. Keywords: intrabodies, single domain antibodies, scFv fragment, cytosolic/nuclear intrabodies, camelid VHHs, shark vNARs, human VH, human VL
    • The structural biology of phenazine biosynthesis.

      Blankenfeldt, Wulf; Parsons, James F; Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany. Electronic address: wulf.blankenfeldt@helmholtz-hzi.de. (2014-09-09)
      The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis.
    • Structural insights into antigen recognition of an anti-β-(1,6)-β-(1,3)-D-glucan antibody.

      Sung, Kwang Hoon; Josewski, Jörn; Dübel, Stefan; Blankenfeldt, Wulf; Rau, Udo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-12)
      Schizophyllan (SCH) is a high molecular weight homopolysaccharide composed of a β-(1,3)-D-glucan main chain with branching β-(1,6)-bound D-glucose residues. It forms triple helices that are highly stable towards heat and extreme pH, which provides SCH with interesting properties for industrial and medical applications. The recombinant anti-SCH antibody JoJ48C11 recognizes SCH and related β-(1,6)-branched β-(1,3)-D-glucans, but details governing its specificity are not known. Here, we fill this gap by determining crystal structures of the antigen binding fragment (Fab) of JoJ48C11 in the apo form and in complex with the unbranched β-(1,3)-D-glucose hexamer laminarihexaose 3.0 and 2.4 Å resolution, respectively. Together with docking studies, this allowed construction of a JoJ48C11/triple-helical SCH complex, leading to the identification of eight amino acid residues of JoJ48C11 (Tyr27
    • Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in Aspergillus fumigatus.

      Dolan, Stephen K; Bock, Tobias; Hering, Vanessa; Owens, Rebecca A; Jones, Gary W; Blankenfeldt, Wulf; Doyle, Sean; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02)
      Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S-methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S-adenosylhomocysteine (1.33 Å) and GtmA complexed to S-adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of ΔgliT::ΔgtmA reveals an uncontrolled over-activation of the gli-cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis-thiomethylation as an ancestral protection strategy against dithiol compounds is now evident.
    • Structure of heme d-free cd nitrite reductase NirS.

      Klünemann, Thomas; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (International Union of Crystallography, 2020-05-29)
      A key step in anaerobic nitrate respiration is the reduction of nitrite to nitric oxide, which is catalysed by the cd1 nitrite reductase NirS in, for example, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Each subunit of this homodimeric enzyme consists of a cytochrome c domain and an eight-bladed β-propeller that binds the uncommon isobacteriochlorin heme d1 as an essential part of its active site. Although NirS has been well studied mechanistically and structurally, the focus of previous studies has been on the active heme d1-bound form. The heme d1-free form of NirS reported here, which represents a premature state of the reductase, adopts an open conformation with the cytochrome c domains moved away from each other with respect to the active enzyme. Further, the movement of a loop around Trp498 seems to be related to a widening of the propeller, allowing easier access to the heme d1-binding side. Finally, a possible link between the open conformation of NirS and flagella formation in P. aeruginosa is discussed.
    • TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1.

      Zmora, Pawel; Hoffmann, Markus; Kollmus, Heike; Moldenhauer, Anna-Sophie; Danov, Olga; Braun, Armin; Winkler, Michael; Schughart, Klaus; Pöhlmann, Stefan; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-07)
      The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors.
    • Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation.

      Scheithauer, Lina; Thiem, Stefanie; Schmelz, Stefan; Dellmann, Ansgar; Büssow, Konrad; Brouwer, René M H J; Ünal, Can M; Blankenfeldt, Wulf; Steinert, Michael; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2021-01-24)
      ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness. This destruction of connective tissue fibres was further substantiated by collagen IV degradation assays. The moderate attenuation of a proA-negative mutant in A549 epithelial cells and THP-1 macrophages suggests that effects of ProA in tissue mainly result from extracellular activity. Correspondingly, ProA contributes to dissemination and serum resistance of the pathogen, which further expands the versatile substrate spectrum of this thermolysin-like protease. The crystal structure of ProA at 1.48 Å resolution showed high congruence to pseudolysin of Pseudomonas aeruginosa, but revealed deviations in flexible loops, the substrate binding pocket S1 ' and the repertoire of cofactors, by which ProA can be distinguished from respective homologues. In sum, this work specified virulence features of ProA at different organisational levels by zooming in from histopathological effects in human lung tissue to atomic details of the protease substrate determination.