• The adjuvant effect of TLR agonists on CD4(+) effector T cells is under the indirect control of regulatory T cells.

      Olivier, Aurélie; Sainz-Perez, Alexander; Dong, Hui; Sparwasser, Tim; Majlessi, Laleh; Leclerc, Claude; Department of Immunology, Paris, France. (2011-08)
      TLR agonists have been suggested to directly impact Tregs, thereby enhancing or reversing their suppressive function. Here, in order to select TLR agonists leading to potent effector T-cell responses, while minimizing Treg inhibitory function, we used a model antigen, covalently linked to an inert delivery system, combined with a large panel of TLR agonists, for the immunization of mice with an attenuated/depleted or intact Treg subset. We observed that the negative modulation of effector CD4(+) T cells exerted by Tregs cannot be circumvented, whatever the TLR agonist used as adjuvant. To better understand the impact of TLR agonists on Tregs, we investigated (i) the TLR expression profile of highly purified CD4(+) Foxp3(+) Tregs, at steady state or subsequent to in vivo activation by TLR agonists and (ii) the Treg phenotype after in vivo and in vitro activation by TLR agonists. Our results demonstrate that TLR agonists, as single signal inducers, are not able to directly activate Tregs. The phenotypic Treg activation observed in vivo, following TLR administration, does not result from cross-talk with conventional T cells but is rather a consequence of the interaction with other immune cell type(s).
    • CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis.

      McNally, Alice; Hill, Geoffrey R; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J; University of Queensland Diamantina Institute, University of Queensland, Brisbane 4072, Australia. (2011-05-03)
      CD4(+)CD25(+) regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8(+) T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4(+)CD25(+) Treg, by critically regulating IL-2 homeostasis, modulate CD8(+) T-cell effector differentiation. Expansion and effector differentiation of CD8(+) T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8(+) effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8(+) effector T cells, where IL-2 produced during CD8(+) T-cell effector differentiation promotes Treg expansion.
    • Characterization of the interferon-producing cell in mice infected with Listeria monocytogenes.

      Stockinger, Silvia; Kastner, Renate; Kernbauer, Elisabeth; Pilz, Andreas; Westermayer, Sandra; Reutterer, Benjamin; Soulat, Didier; Stengl, Gabriele; Vogl, Claus; Frenz, Theresa; et al. (2009-03)
      Production of type I interferons (IFN-I, mainly IFNalpha and IFNbeta) is a hallmark of innate immune responses to all classes of pathogens. When viral infection spreads to lymphoid organs, the majority of systemic IFN-I is produced by a specialized "interferon-producing cell" (IPC) that has been shown to belong to the lineage of plasmacytoid dendritic cells (pDC). It is unclear whether production of systemic IFN-I is generally attributable to pDC irrespective of the nature of the infecting pathogen. We have addressed this question by studying infections of mice with the intracellular bacterium Listeria monocytogenes. Protective innate immunity against this pathogen is weakened by IFN-I activity. In mice infected with L. monocytogenes, systemic IFN-I was amplified via IFN-beta, the IFN-I receptor (IFNAR), and transcription factor interferon regulatory factor 7 (IRF7), a molecular circuitry usually characteristic of non-pDC producers. Synthesis of serum IFN-I did not require TLR9. In contrast, in vitro-differentiated pDC infected with L. monocytogenes needed TLR9 to transcribe IFN-I mRNA. Consistent with the assumption that pDC are not the producers of systemic IFN-I, conditional ablation of the IFN-I receptor in mice showed that most systemic IFN-I is produced by myeloid cells. Furthermore, results obtained with FACS-purified splenic cell populations from infected mice confirmed the assumption that a cell type with surface antigens characteristic of macrophages and not of pDC is responsible for bulk IFN-I synthesis. The amount of IFN-I produced in the investigated mouse lines was inversely correlated to the resistance to lethal infection. Based on these data, we propose that the engagement of pDC, the mode of IFN-I mobilization, as well as the shaping of the antimicrobial innate immune response by IFN-I differ between intracellular pathogens.
    • Foxp3+ regulatory T cells control persistence of viral CNS infection.

      Reuter, Dajana; Sparwasser, Tim; Hünig, Thomas; Schneider-Schaulies, Jürgen; TWINCORE, Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 3-7, 30625 Hannover, Germany. (2012)
      We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified) mice and recombinant measles virus (MV). Using this model infection we investigated the role of regulatory T cells (Tregs) as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+) CD25(+) Foxp3(+) Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+) T cells predominantly recognising the H-2D(b)-presented viral hemagglutinin epitope MV-H(22-30) (RIVINREHL) were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p.) application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT) in DEREG (depletion of regulatory T cells)-mice induced an increase of virus-specific CD8(+) effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.
    • Lack of Foxp3+ macrophages in both untreated and B16 melanoma-bearing mice.

      Mayer, Christian T; Kühl, Anja A; Loddenkemper, Christoph; Sparwasser, Tim (2012-02-02)
    • Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth.

      Hansen, Wiebke; Hutzler, Marina; Abel, Simone; Alter, Christina; Stockmann, Christian; Kliche, Stefanie; Albert, Juliane; Sparwasser, Tim; Sakaguchi, Shimon; Westendorf, Astrid M; et al. (2012-10-22)
      Infiltration of Foxp3(+) regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3(+) T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell-specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3(+) T reg cells were significantly reduced accompanied by enhanced activation of CD8(+) T cells within tumors of T cell-specific Nrp-1-deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1(+) T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3(+) T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression.
    • Optimal isolation of functional Foxp3+ induced regulatory T cells using DEREG mice.

      Baru, Abdul Mannan; Untucht, Christopher; Ganesh, Venkateswaran; Hesse, Christina; Mayer, Christian T; Sparwasser, Tim (2012)
      Foxp3 reporter mice including DEREG (DEpletion of REGulatory T cells) mice have greatly helped in exploring the biology of Foxp3(+) Tregs. DEREG mice express a DTR-eGFP fusion protein under the control of a bacterial artificial chromosome (BAC)-encoded Foxp3 promoter, allowing the viable isolation and inducible depletion of Foxp3(+) Tregs. Adaptive Tregs differentiated in vitro to express Foxp3 (iTregs) are gaining high interest as potential therapeutics for inflammatory conditions such as autoimmunity, allergy and transplant rejection. However, selective isolation of Foxp3(+) iTregs with a stable phenotype still remains to be a problem, especially in the human setting. While screening for culture conditions to generate stable CD4(+)Foxp3(+) iTregs from DEREG mice, with maximum suppressive activity, we observed an unexpected dichotomy of eGFP and Foxp3 expression which is not seen in ex vivo isolated cells from DEREG mice. Further characterization of eGFP(+)Foxp3(-) cells revealed relatively lower CD25 expression and a lack of suppressive activity in vitro. Similarly, eGFP(-) cells isolated from the same cultures were not suppressive despite of a broad CD25 expression reflecting mere T cell activation. In contrast, eGFP(+)Foxp3(+) iTregs exhibited potent suppressive activity comparable to that of natural eGFP(+)Foxp3(+) Tregs, emphasizing the importance of isolating Foxp3 expressing iTregs. Interestingly, the use of plate-bound anti-CD3 and anti-CD28 or Flt3L-driven BMDC resulted in considerable resolution of the observed dichotomy. In summary, we defined culture conditions for efficient generation of eGFP(+)Foxp3(+) iTregs by use of DEREG mice. Isolation of functional Foxp3(+) iTregs using DEREG mice can also be achieved under sub-optimal conditions based on the magnitude of surface CD25 expression, in synergy with transgene encoded eGFP. Besides, the reported phenomenon may be of general interest for exploring Foxp3 gene regulation, given that Foxp3 and eGFP expression are driven from distinct Foxp3 loci and because this dichotomy preferentially occurs only under defined in vitro conditions.