group-leader: Dr. Tim Sparwasser

Recent Submissions

  • Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization.

    Riedel, Thomas; Neumann-Schaal, Meina; Wittmann, Johannes; Schober, Isabel; Hofmann, Julia Danielle; Lu, Chia-Wen; Dannheim, Antonia; Zimmermann, Ortrud; Lochner, Matthias; Groß, Uwe; et al. (Oxford University Press, 2020)
  • The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis.

    Mesquita, Inês; Ferreira, Carolina; Moreira, Diana; Kluck, George Eduardo Gabriel; Barbosa, Ana Margarida; Torrado, Egídio; Dinis-Oliveira, Ricardo Jorge; Gonçalves, Luís Gafeira; Beauparlant, Charles-Joly; Droit, Arnaud; et al. (Cell Press, 2020-03-24)
    Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.
  • C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function.

    Wang, Yong; Dembowsky, Klaus; Chevalier, Eric; Stüve, Philipp; Korf-Klingebiel, Mortimer; Lochner, Matthias; Napp, L Christian; Frank, Heike; Brinkmann, Eva; Kanwischer, Anna; et al. (Lippinscott, Williams & Wilkins; American Heart Association, 2019-01-30)
    Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (T Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 d) enhanced angiogenesis in the infarct border-zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 d. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and T Our data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic T
  • De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the Function of Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages.

    Stüve, Philipp; Minarrieta, Lucía; Erdmann, Hanna; Arnold-Schrauf, Catharina; Swallow, Maxine; Guderian, Melanie; Krull, Freyja; Hölscher, Alexandra; Ghorbani, Peyman; Behrends, Jochen; et al. (Frontiers, 2018-01-01)
    Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.
  • Varicella zoster virus infections in neurological patients: a clinical study.

    Skripuletz, Thomas; Pars, Kaweh; Schulte, Alina; Schwenkenbecher, Philipp; Yildiz, Özlem; Ganzenmueller, Tina; Kuhn, Maike; Spreer, Annette; Wurster, Ulrich; Pul, Refik; et al. (2018-05-25)
    Varicella zoster virus (VZV) reactivation is a common infectious disease in neurology and VZV the second most frequent virus detected in encephalitis. This study investigated characteristics of clinical and laboratory features in patients with VZV infection. Two hundred eighty two patients with VZV reactivation that were hospitalized in the department of neurology in the time from 2005 to 2013 were retrospectively evaluated. Results from cerebrospinal fluid (CSF) analysis were available from 85 patients. Trigeminal rash was the most common clinical manifestation, followed by segmental rash, CNS infection, facial nerve palsy, postherpetic neuralgia, and radiculitis. MRI of the brain performed in 25/33 patients with encephalitis/meningitis did not show any signs of infection in the brain parenchyma. Only one patient showed contrast enhancement in the hypoglossal nerve. General signs of infection such as fever or elevated CRP values were found in only half of the patients. Furthermore, rash was absent in a quarter of patients with CNS infection and facial nerve palsy, and thus, infection could only be proven by CSF analysis. Although slight inflammatory CSF changes occurred in few patients with isolated rash, the frequency was clearly higher in patients with CNS infection and facial nerve palsy. Monosegmental herpes zoster is often uncomplicated and a diagnostic lumbar puncture is not essential. In contrast, CSF analysis is an essential diagnostic tool in patients with skin lesions and cranial nerve or CNS affection. In patients with neuro-psychiatric symptoms and inflammatory CSF changes analysis for VZV should be performed even in the absence of skin lesions.
  • Fatty acid metabolism in CD8 T cell memory: Challenging current concepts.

    Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-05-01)
  • Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination.

    Serradell, Marianela C; Gargantini, Pablo R; Saura, Alicia; Oms, Sergio R; Rupil, Lucía L; Berod, Luciana; Sparwasser, Tim; Luján, Hugo D; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-06-01)
    Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate
  • Regulatory T cells control endothelial chemokine production and migration of T cells into intestinal tumors of APC mice.

    Akeus, Paulina; Szeponik, Louis; Ahlmanner, Filip; Sundström, Patrik; Alsén, Samuel; Gustavsson, Bengt; Sparwasser, Tim; Raghavan, Sukanya; Quiding-Järbrink, Marianne; TWINCORE, Zentrum für experimentelle uns klinische Ifektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-04-18)
    Tumor-infiltrating lymphocytes are crucial for anti-tumor immunity. We have previously shown that regulatory T cells (Treg) are able to reduce T-cell transendothelial migration in vitro and accumulation of effector T cells in intestinal tumors in vivo. Treg depletion also resulted in increased levels of the chemokines CXCL9 and CXCL10 specifically in the tumors. In this study, we investigated the mechanisms for Treg mediated suppression of T-cell migration into intestinal tumors in the APC
  • Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017.

    Ciccocioppo, Rachele; Dos Santos, Claudia C; Baumgart, Daniel C; Cangemi, Giuseppina C; Cardinale, Vincenzo; Ciacci, Carolina; De Coppi, Paolo; Haldar, Debashis; Klersy, Catherine; Nostro, M Cristina; et al. (2018-03)
    A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
  • In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation.

    Villacorta, Luis; Minarrieta, Lucia; Salvatore, Sonia R; Khoo, Nicholas K; Rom, Oren; Gao, Zhen; Berman, Rebecca C; Jobbagy, Soma; Li, Lihua; Woodcock, Steven R; et al. (2018-05)
    Conjugated linoleic acid (CLA) is a prime substrate for intra-gastric nitration giving rise to the formation of nitro-conjugated linoleic acid (NO2-CLA). Herein, NO2-CLA generation is demonstrated within the context of acute inflammatory responses both in vitro and in vivo. Macrophage activation resulted in dose- and time-dependent CLA nitration and also in the production of secondary electrophilic and non-electrophilic derivatives. Both exogenous NO2-CLA as well as that generated in situ, attenuated NF-κB-dependent gene expression, decreased pro-inflammatory cytokine production and up-regulated Nrf2-regulated proteins. Importantly, both CLA nitration and the corresponding downstream anti-inflammatory actions of NO2-CLA were recapitulated in a mouse peritonitis model where NO2-CLA administration decreased pro-inflammatory cytokines and inhibited leukocyte recruitment. Taken together, our results demonstrate that the formation of NO2-CLA has the potential to function as an adaptive response capable of not only modulating inflammation amplitude but also protecting neighboring tissues via the expression of Nrf2-dependent genes.
  • Regulatory T Cells Suppress Inflammation and Blistering in Pemphigoid Diseases.

    Bieber, Katja; Sun, Shijie; Witte, Mareike; Kasprick, Anika; Beltsiou, Foteini; Behnen, Martina; Laskay, Tamás; Schulze, Franziska S; Pipi, Elena; Reichhelm, Niklas; et al. (2017)
    Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated β2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.
  • Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A; et al. (2017-10-26)
    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγpos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans.
  • Suppression of Th17-polarized airway inflammation by rapamycin.

    Joean, Oana; Hueber, Anja; Feller, Felix; Jirmo, Adan Chari; Lochner, Matthias; Dittrich, Anna-Maria; Albrecht, Melanie; TWINCORE, Zentrum für experimentelle und kliische Infektionsforschung GmbH, Deodor-Lynen-Sr. 7, 30625 Hannover, Germany. (2017-11-10)
    Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.
  • About cytokeratin 19 and the drivers of liver regeneration.

    Junge, Norman; Sharma, Amar Deep; Ott, Michael; TwinCore, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2017-10-12)
  • TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells.

    Sesti-Costa, Renata; Françozo, Marcela Cristina Santiago; Silva, Grace Kelly; Proenca-Modena, José Luiz; Silva, João Santana; Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7, 30625 Hannover, Germany. (2017)
    Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.
  • Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function.

    van der Vlugt, L E P M; Obieglo, K; Ozir-Fazalalikhan, A; Sparwasser, Tim; Haeberlein, S; Smits, H H; TwinCore, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2017-08)
    Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.
  • Tregs restrain dendritic cell autophagy to ameliorate autoimmunity.

    Alissafi, Themis; Banos, Aggelos; Boon, Louis; Sparwasser, Tim; Ghigo, Alessandra; Wing, Kajsa; Vassilopoulos, Dimitrios; Boumpas, Dimitrios; Chavakis, Triantafyllos; Cadwell, Ken; et al. (2017-06-30)
    Design of efficacious Treg-based therapies and establishment of clinical tolerance in autoimmune diseases have proven to be challenging. The clinical implementation of Treg immunotherapy has been hampered by various impediments related to the stability and isolation procedures of Tregs as well as the specific in vivo targets of Treg modalities. Herein, we have demonstrated that Foxp3+ Tregs potently suppress autoimmune responses in vivo through inhibition of the autophagic machinery in DCs in a cytotoxic T-lymphocyte-associated protein 4-dependent (CTLA4-dependent) manner. Autophagy-deficient DCs exhibited reduced immunogenic potential and failed to prime autoantigen-specific CD4+ T cells to mediate autoimmunity. Mechanistically, CTLA4 binding promoted activation of the PI3K/Akt/mTOR axis and FoxO1 nuclear exclusion in DCs, leading to decreased transcription of the autophagy component microtubule-associated protein 1 light chain 3β (Lc3b). Human DCs treated with CTLA4-Ig, a fusion protein composed of the Fc region of IgG1 and the extracellular domain of CTLA4 (also known as abatacept, marketed as Orencia), demonstrated reduced levels of autophagosome formation, while DCs from CTLA4-Ig-treated rheumatoid arthritis patients displayed diminished LC3B transcripts. Collectively, our data identify the canonical autophagy pathway in DCs as a molecular target of Foxp3+ Treg-mediated suppression that leads to amelioration of autoimmune responses. These findings may pave the way for the development of therapeutic protocols that exploit Tregs for the treatment of autoimmunity as well as diseases in which disturbed tolerance is a common denominator.
  • The human cytomegalovirus glycoprotein pUL11 acts via CD45 to induce T cell IL-10 secretion.

    Zischke, Jasmin; Mamareli, Panagiota; Pokoyski, Claudia; Gabaev, Ildar; Buyny, Sabine; Jacobs, Roland; Falk, Christine S; Lochner, Matthias; Sparwasser, Tim; Schulz, Thomas F; et al. (2017-06)
    Human Cytomegalovirus (HCMV) is a widespread pathogen, infection with which can cause severe disease for immunocompromised individuals. The complex changes wrought on the host's immune system during both productive and latent HCMV infection are well known. Infected cells are masked and manipulated and uninfected immune cells are also affected; peripheral blood mononuclear cell (PBMC) proliferation is reduced and cytokine profiles altered. Levels increase of the anti-inflammatory cytokine IL-10, which may be important for the establishment of HCMV infections and is required for the development of high viral titres by murine cytomegalovirus. The mechanisms by which HCMV affects T cell IL-10 secretion are not understood. We show here that treatment of PBMC with purified pUL11 induces IL-10 producing T cells as a result of pUL11 binding to the CD45 phosphatase on T cells. IL-10 production induced by HCMV infection is also in part mediated by pUL11. Supernatants from pUL11 treated cells have anti-inflammatory effects on untreated PBMC. Considering the mechanism, CD45 can be a positive or negative regulator of TCR signalling, depending on its expression level, and we show that pUL11 also has concentration dependent activating or inhibitory effects on T cell proliferation and on the kinase function of the CD45 substrate Lck. pUL11 is therefore the first example of a viral protein that can target CD45 to induce T cells with anti-inflammatory properties. It is also the first HCMV protein shown to induce T cell IL-10 secretion. Understanding the mechanisms by which pUL11-induced changes in signal strength influence T cell development and function may provide the basis for the development of novel antiviral treatments and therapies against immune pathologies.
  • IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection.

    Popovic, Branka; Golemac, Mijo; Podlech, Jürgen; Zeleznjak, Jelena; Bilic-Zulle, Lidija; Lukic, Miodrag L; Cicin-Sain, Luka; Reddehase, Matthias J; Sparwasser, Tim; Krmpotic, Astrid; et al. (2017-04)
    Regulatory T (Treg) cells dampen an exaggerated immune response to viral infections in order to avoid immunopathology. Cytomegaloviruses (CMVs) are herpesviruses usually causing asymptomatic infection in immunocompetent hosts and induce strong cellular immunity which provides protection against CMV disease. It remains unclear how these persistent viruses manage to avoid induction of immunopathology not only during the acute infection but also during life-long persistence and virus reactivation. This may be due to numerous viral immunoevasion strategies used to specifically modulate immune responses but also induction of Treg cells by CMV infection. Here we demonstrate that liver Treg cells are strongly induced in mice infected with murine CMV (MCMV). The depletion of Treg cells results in severe hepatitis and liver damage without alterations in the virus load. Moreover, liver Treg cells show a high expression of ST2, a cellular receptor for tissue alarmin IL-33, which is strongly upregulated in the liver of infected mice. We demonstrated that IL-33 signaling is crucial for Treg cell accumulation after MCMV infection and ST2-deficient mice show a more pronounced liver pathology and higher mortality compared to infected control mice. These results illustrate the importance of IL-33 in the suppressive function of liver Treg cells during CMV infection.
  • MyD88 signaling in dendritic cells and the intestinal epithelium controls immunity against intestinal infection with C. rodentium.

    Friedrich, Christin; Mamareli, Panagiota; Thiemann, Sophie; Kruse, Friederike; Wang, Zuobai; Holzmann, Bernhard; Strowig, Till; Sparwasser, Tim; Lochner, Matthias; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen Str.7, 30625 Hannover, Germany. (2017-05)
    MyD88-mediated signaling downstream of Toll-like receptors and the IL-1 receptor family is critically involved in the induction of protective host responses upon infections. Although it is known that MyD88-deficient mice are highly susceptible to a wide range of bacterial infections, the cell type-specific contribution of MyD88 in protecting the host against intestinal bacterial infection is only poorly understood. In order to investigate the importance of MyD88 in specific immune and nonimmune cell types during intestinal infection, we employed a novel murine knock-in model for MyD88 that enables the cell type-specific reactivation of functional MyD88 expression in otherwise MyD88-deficient mice. We report here that functional MyD88 signaling in CD11c+ cells was sufficient to activate intestinal dendritic cells (DC) and to induce the early group 3 innate lymphoid cell (ILC3) response as well as the development of colonic Th17/Th1 cells in response to infection with the intestinal pathogen C. rodentium. In contrast, restricting MyD88 signaling to several other cell types, including macrophages (MO), T cells or ILC3 did not induce efficient intestinal immune responses upon infection. However, we observed that the functional expression of MyD88 in intestinal epithelial cells (IEC) also partially protected the mice during intestinal infection, which was associated with enhanced epithelial barrier integrity and increased expression of the antimicrobial peptide RegIIIγ and the acute phase protein SAA1 by epithelial cells. Together, our data suggest that MyD88 signaling in DC and IEC is both essential and sufficient to induce a full spectrum of host responses upon intestinal infection with C. rodentium.

View more