High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2(T) (DSM 21788(T)), a valuable source of polysaccharide decomposing enzymes.
Name:
hahnke et al_final.pdf
Size:
2.725Mb
Format:
PDF
Description:
Open Access publication
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Hahnke, Richard LStackebrandt, Erko
Meier-Kolthoff, Jan P
Tindall, Brian J
Huang, Sixing
Rohde, Manfred
Lapidus, Alla
Han, James
Trong, Stephan
Haynes, Matthew
Reddy, T B K
Huntemann, Marcel
Pati, Amrita
Ivanova, Natalia N
Mavromatis, Konstantinos
Markowitz, Victor
Woyke, Tanja
Göker, Markus
Kyrpides, Nikos C
Klenk, Hans-Peter
Issue Date
2015
Metadata
Show full item recordAbstract
Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2(T) and its next relatives seem more closely related to the genus Myroides than to the type species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2(T) to decompose plant and algae derived polysaccharides. Based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.Citation
High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2(T) (DSM 21788(T)), a valuable source of polysaccharide decomposing enzymes. 2015, 10:46 Stand Genomic SciJournal
Standards in genomic sciencesPubMed ID
26380634Type
ArticleLanguage
enISSN
1944-3277ae974a485f413a2113503eed53cd6c53
10.1186/s40793-015-0032-y
Scopus Count
The following license files are associated with this item:
Related articles
- High-quality draft genome sequence of Flavobacterium suncheonense GH29-5(T) (DSM 17707(T)) isolated from greenhouse soil in South Korea, and emended description of Flavobacterium suncheonense GH29-5(T).
- Authors: Tashkandy N, Sabban S, Fakieh M, Meier-Kolthoff JP, Huang S, Tindall BJ, Rohde M, Baeshen MN, Baeshen NA, Lapidus A, Copeland A, Pillay M, Reddy TB, Huntemann M, Pati A, Ivanova N, Markowitz V, Woyke T, Göker M, Klenk HP, Kyrpides NC, Hahnke RL
- Issue date: 2016
- Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet.
- Authors: Ali Z, Cousin S, Frühling A, Brambilla E, Schumann P, Yang Y, Stackebrandt E
- Issue date: 2009 Oct
- High-quality-draft genome sequence of the yellow-pigmented flavobacterium Joostella marina type strain (En5(T)).
- Authors: Stackebrandt E, Chertkov O, Lapidus A, Nolan M, Lucas S, Han C, Cheng JF, Tapia R, Goodwin LA, Bruce D, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Rohde M, Tindall BJ, Göker M, Woyke T, Detter JC, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC
- Issue date: 2013 Apr 15
- Comparing polysaccharide decomposition between the type strains Gramella echinicola KMM 6050(T) (DSM 19838(T)) and Gramella portivictoriae UST040801-001(T) (DSM 23547(T)), and emended description of Gramella echinicola Nedashkovskaya et al. 2005 emend. Shahina et al. 2014 and Gramella portivictoriae Lau et al. 2005.
- Authors: Panschin I, Huang S, Meier-Kolthoff JP, Tindall BJ, Rohde M, Verbarg S, Lapidus A, Han J, Trong S, Haynes M, Reddy TB, Huntemann M, Pati A, Ivanova NN, Mavromatis K, Markowitz V, Woyke T, Göker M, Klenk HP, Kyrpides NC, Hahnke RL
- Issue date: 2016
- Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci.
- Authors: Sun C, Fu GY, Zhang CY, Hu J, Xu L, Wang RJ, Su Y, Han SB, Yu XY, Cheng H, Zhang XQ, Huo YY, Xu XW, Wu M
- Issue date: 2016 May 15