Show simple item record

dc.contributor.authorMöbius, Petra
dc.contributor.authorHölzer, Martin
dc.contributor.authorFelder, Marius
dc.contributor.authorNordsiek, Gabriele
dc.contributor.authorGroth, Marco
dc.contributor.authorKöhler, Heike
dc.contributor.authorReichwald, Kathrin
dc.contributor.authorPlatzer, Matthias
dc.contributor.authorMarz, Manja
dc.date.accessioned2016-07-12T08:49:25Z
dc.date.available2016-07-12T08:49:25Z
dc.date.issued2015-09-17
dc.identifier.citationComprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany. 2015: Genome Biol Evolen
dc.identifier.issn1759-6653
dc.identifier.pmid26384038
dc.identifier.doi10.1093/gbe/evv154
dc.identifier.urihttp://hdl.handle.net/10033/615974
dc.description.abstractMycobacterium avium (M. a.) subsp. paratuberculosis (MAP) - the etiologic agent of Johne's disease - affects cattle, sheep and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III] respectively MAP-C [Type-II]) comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. The current study presents the so far best assembled genome of a MAP-S-strain: sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from U.S. and Australia and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined either by NCBI or BacProt. A new Shine-Dalgarno sequence motif (5'AGCTGG3') was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 non-coding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four out of ten assumed MAP-S-specific large sequence polymorphism regions (LSP(S)s) are still present in MAP-C strains; new LSP(S)s were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirm the strong similarity of MAP-C strains and show higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to M. intracellulare.
dc.languageENG
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleComprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany.
dc.typeArticleen
dc.contributor.departmentHelmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany.en
dc.identifier.journalGenome biology and evolutionen
refterms.dateFOA2018-06-12T22:56:56Z
html.description.abstractMycobacterium avium (M. a.) subsp. paratuberculosis (MAP) - the etiologic agent of Johne's disease - affects cattle, sheep and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III] respectively MAP-C [Type-II]) comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. The current study presents the so far best assembled genome of a MAP-S-strain: sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from U.S. and Australia and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined either by NCBI or BacProt. A new Shine-Dalgarno sequence motif (5'AGCTGG3') was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 non-coding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four out of ten assumed MAP-S-specific large sequence polymorphism regions (LSP(S)s) are still present in MAP-C strains; new LSP(S)s were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirm the strong similarity of MAP-C strains and show higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to M. intracellulare.


Files in this item

Thumbnail
Name:
Möbius et al.pdf
Size:
1.189Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-sa/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/