Show simple item record

dc.contributor.authorPatzelt, Diana
dc.contributor.authorMichael, Victoria
dc.contributor.authorPäuker, Orsola
dc.contributor.authorEbert, Matthias
dc.contributor.authorTielen, Petra
dc.contributor.authorJahn, Dieter
dc.contributor.authorTomasch, Jürgen
dc.contributor.authorPetersen, Jörn
dc.contributor.authorWagner-Döbler, Irene
dc.date.accessioned2016-07-28T11:39:47Z
dc.date.available2016-07-28T11:39:47Z
dc.date.issued2016
dc.identifier.citationGene Flow Across Genus Barriers - Conjugation of Dinoroseobacter shibae's 191-kb Killer Plasmid into Phaeobacter inhibens and AHL-mediated Expression of Type IV Secretion Systems. 2016, 7:742 Front Microbiolen
dc.identifier.issn1664-302X
dc.identifier.pmid27303368
dc.identifier.doi10.3389/fmicb.2016.00742
dc.identifier.urihttp://hdl.handle.net/10033/617648
dc.description.abstractRhodobacteraceae harbor a conspicuous wealth of extrachromosomal replicons (ECRs) and therefore the exchange of genetic material via horizontal transfer has been supposed to be a major evolutionary driving force. Many plasmids in this group encode type IV secretion systems (T4SS) that are expected to mediate transfer of proteins and/or DNA into host cells, but no experimental evidence of either has yet been provided. Dinoroseobacter shibae, a species of the Roseobacter group within the Rhodobacteraceae family, contains five ECRs that are crucial for anaerobic growth, survival under starvation and the pathogenicity of this model organism. Here we tagged two syntenous but compatible RepABC-type plasmids of 191 and 126-kb size, each encoding a T4SS, with antibiotic resistance genes and demonstrated their conjugational transfer into a distantly related Roseobacter species, namely Phaeobacter inhibens. Pulsed field gel electrophoresis showed transfer of those replicons into the recipient both individually but also together documenting the efficiency of conjugation. We then studied the influence of externally added quorum sensing (QS) signals on the expression of the T4SS located on the sister plasmids. A QS deficient D. shibae null mutant (ΔluxI1 ) lacking synthesis of N-acyl-homoserine lactones (AHLs) was cultivated with a wide spectrum of chemically diverse long-chain AHLs. All AHLs with lengths of the acid side-chain ≥14 reverted the ΔluxI1 phenotype to wild-type. Expression of the T4SS was induced up to log2 ∼3fold above wild-type level. We hypothesize that conjugation in roseobacters is QS-controlled and that the QS system may detect a wide array of long-chain AHLs at the cell surface.
dc.language.isoenen
dc.titleGene Flow Across Genus Barriers - Conjugation of Dinoroseobacter shibae's 191-kb Killer Plasmid into Phaeobacter inhibens and AHL-mediated Expression of Type IV Secretion Systems.en
dc.typeArticleen
dc.identifier.journalFrontiers in microbiologyen
refterms.dateFOA2018-06-12T17:43:06Z
html.description.abstractRhodobacteraceae harbor a conspicuous wealth of extrachromosomal replicons (ECRs) and therefore the exchange of genetic material via horizontal transfer has been supposed to be a major evolutionary driving force. Many plasmids in this group encode type IV secretion systems (T4SS) that are expected to mediate transfer of proteins and/or DNA into host cells, but no experimental evidence of either has yet been provided. Dinoroseobacter shibae, a species of the Roseobacter group within the Rhodobacteraceae family, contains five ECRs that are crucial for anaerobic growth, survival under starvation and the pathogenicity of this model organism. Here we tagged two syntenous but compatible RepABC-type plasmids of 191 and 126-kb size, each encoding a T4SS, with antibiotic resistance genes and demonstrated their conjugational transfer into a distantly related Roseobacter species, namely Phaeobacter inhibens. Pulsed field gel electrophoresis showed transfer of those replicons into the recipient both individually but also together documenting the efficiency of conjugation. We then studied the influence of externally added quorum sensing (QS) signals on the expression of the T4SS located on the sister plasmids. A QS deficient D. shibae null mutant (ΔluxI1 ) lacking synthesis of N-acyl-homoserine lactones (AHLs) was cultivated with a wide spectrum of chemically diverse long-chain AHLs. All AHLs with lengths of the acid side-chain ≥14 reverted the ΔluxI1 phenotype to wild-type. Expression of the T4SS was induced up to log2 ∼3fold above wild-type level. We hypothesize that conjugation in roseobacters is QS-controlled and that the QS system may detect a wide array of long-chain AHLs at the cell surface.


Files in this item

Thumbnail
Name:
patzelt et al_final.pdf
Size:
1.330Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record