• Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

      Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P; Helmholtz Centre for infection research, Inhoffenstr. 7,38124 Braunschweig, Germany. (2016-09)
      To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016.
    • Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry.

      Blockus, Sebastian; Sake, Svenja M; Wetzke, Martin; Grethe, Christina; Graalmann, Theresa; Pils, Marina; Le Goffic, Ronan; Galloux, Marie; Prochnow, Hans; Rox, Katharina; et al. (Elsevier, 2020-03-18)
      Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.