• Antiviral drug discovery: broad-spectrum drugs from nature.

      Martinez, J P; Sasse, F; Brönstrup, M; Diez, J; Meyerhans, A; Helmholtz Centre for infection research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-01)
      Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
    • Myxobacteria: natural pharmaceutical factories.

      Diez, Juana; Martinez, Javier P; Mestres, Jordi; Sasse, Florenz; Frank, Ronald; Meyerhans, Andreas; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2012)
      Myxobacteria are amongst the top producers of natural products. The diversity and unique structural properties of their secondary metabolites is what make these social microbes highly attractive for drug discovery. Screening of products derived from these bacteria has revealed a puzzling amount of hits against infectious and non-infectious human diseases. Preying mainly on other bacteria and fungi, why would these ancient hunters manufacture compounds beneficial for us? The answer may be the targeting of shared processes and structural features conserved throughout evolution.
    • Target identification by image analysis.

      Fetz, V; Prochnow, H; Brönstrup, Mark; Sasse, F; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Covering: 1997 to the end of 2015Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. While this approach has been successfully applied to the characterization of natural products based on a visual inspection of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.