• Allogeneic gene-modified tumor cells (RCC-26/IL-7/CD80) as a vaccine in patients with metastatic renal cell cancer: a clinical phase-I study.

      Westermann, J; Flörcken, A; Willimsky, G; van Lessen, A; Kopp, J; Takvorian, A; Jöhrens, K; Lukowsky, A; Schönemann, C; Sawitzki, B; et al. (2011-04)
      Despite novel targeted agents, prognosis of metastatic renal cell cancer (RCC) remains poor, and experimental therapeutic strategies are warranted. Transfection of tumor cells with co-stimulatory molecules and/or cytokines is able to increase immunogenicity. Therefore, in our clinical study, 10 human leukocyte antigen (HLA)-A(*)0201(+) patients with histologically-confirmed progressive metastatic clear cell RCC were immunized repetitively over 22 weeks with 2.5-40 × 10(6) interleukin (IL)-7/CD80 cotransfected allogeneic HLA-A(*)0201(+) tumor cells (RCC26/IL-7/CD80). Endpoints of the study were feasibility, safety, immunological and clinical responses. Vaccination was feasible and safe. In all, 50% of the patients showed stable disease throughout the study; the median time to progression was 18 weeks. However, vaccination with allogeneic RCC26/IL-7/CD80 tumor cells was not able to induce TH1-polarized immune responses. A TH2 cytokine profile with increasing amounts of antigen-specific IL-10 secretion was observed in most of the responding patients. Interferon-γ secretion by patient lymphocytes upon antigen-specific and non-specific stimulation was substantially impaired, both before and during vaccination, as compared with healthy controls. This is possibly due to profound tumor-induced immunosuppression, which may prevent induction of antitumor immune responses by the gene-modified vaccine. Vaccination in minimal residual disease with concurrent depletion of regulatory cells might be one strategy to overcome this limitation.
    • Analysis of gene expression data from non-small cell lung carcinoma cell lines reveals distinct sub-classes from those identified at the phenotype level.

      Dalby, Andrew R; Emam, Ibrahim; Franke, Raimo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2012)
      Microarray data from cell lines of Non-Small Cell Lung Carcinoma (NSCLC) can be used to look for differences in gene expression between the cell lines derived from different tumour samples, and to investigate if these differences can be used to cluster the cell lines into distinct groups. Dividing the cell lines into classes can help to improve diagnosis and the development of screens for new drug candidates. The micro-array data is first subjected to quality control analysis and then subsequently normalised using three alternate methods to reduce the chances of differences being artefacts resulting from the normalisation process. The final clustering into sub-classes was carried out in a conservative manner such that sub-classes were consistent across all three normalisation methods. If there is structure in the cell line population it was expected that this would agree with histological classifications, but this was not found to be the case. To check the biological consistency of the sub-classes the set of most strongly differentially expressed genes was be identified for each pair of clusters to check if the genes that most strongly define sub-classes have biological functions consistent with NSCLC.
    • Cytotoxic and antivascular 1-methyl-4-(3-fluoro-4-methoxyphenyl)-5-(halophenyl)-imidazoles.

      Biersack, Bernhard; Muthukumar, Yazh; Schobert, Rainer; Sasse, Florenz (2011-11-01)
      A series of 1-methyl-4,5-diphenylimidazoles 6 with various patterns of m-halogen substitution at the 5-phenyl ring were tested for cytotoxicity in cancer and nonmalignant cell lines and for their capacity to prevent tube formation in HUVEC cultures. Unlike the monofluoro and difluoro derivatives 6a and 6e, the monobromo and diiodo analogs 6c and 6h were strongly cytotoxic and inhibited the polymerization of tubulin and the tube formation by HUVEC. The dibromo derivative 6g displayed a unique selectivity for KB-3-1 cervix and PC-3 prostate cancer cells. It also inhibited the tube formation by HUVEC and the polymerization of tubulin which is indicative of its potential antiangiogenic activity in solid tumors.
    • Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling.

      Heinzelmann, Katharina; Scholz, Barbara A; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina; Helmholtz Centre for infection research. Inhoffenstr. 7. 38124 Braunschweig, Germany. (2010-12)
      In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling.
    • Modification of uptake and subcellular distribution of doxorubicin by N-acylhydrazone residues as visualised by intrinsic fluorescence.

      Effenberger-Neidnicht, Katharina; Breyer, Sandra; Mahal, Katharina; Sasse, Florenz; Schobert, Rainer (2012-01)
      Doxorubicin (1) is commonly used in the treatment of a wide range of cancers. Some N-acylhydrazones of 1 were previously found to have an improved tumour and organ selectivity. In order to clarify the molecular basis for this effect, the cellular uptake into various cancer cells and the localisation in PtK(2) potoroo kidney cells of 1 and its N-acylhydrazones derived from heptadecanoic acid (2) and 11-(menthoxycarbonyl)undecanoic acid (3) were studied drawing on their intrinsic fluorescence.
    • A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action.

      Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-08-16)
      A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.
    • Novel peptidomimetic compounds containing redox active chalcogens and quinones as potential anticancer agents.

      Shaaban, Saad; Diestel, Randi; Hinkelmann, Bettina; Muthukumar, Yazh; Verma, Rajeshwar P; Sasse, Florenz; Jacob, Claus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2012-12)
      Many types of cancer cells are associated with a disturbed intracellular redox balance and oxidative stress (OS). Among the various agents employed to modulate the intracellular redox state of cells, certain redox catalysts containing quinone and chalcogen moieties have shown considerable promise. Passerini multicomponent reaction has been developed for the synthesis of agents combining two, three or even four redox centers in one molecule in a good yield. When incubated with cancer cells these agents inhibited cell proliferation and induced apoptotic cell death. Interestingly, some of these redox active compounds exhibited quite low toxicity with normal cells. The cause was obviously OS, which was reflected by significant decrease in reduced glutathione, subsequently cell cycle arrest and induction of apoptosis.
    • Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

      Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-15)
      A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations.