• Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication.

      Wunderlich, Kerstin; Mayer, Daniel; Ranadheera, Charlene; Holler, Anne-Sophie; Mänz, Benjamin; Martin, Arnold; Chase, Geoffrey; Tegge, Werner; Frank, Ronald; Kessler, Ulrich; et al. (2009-10-20)
      There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.
    • Peptide-mediated interference with influenza A virus polymerase.

      Ghanem, Alexander; Mayer, Daniel; Chase, Geoffrey; Tegge, Werner; Frank, Ronald; Kochs, Georg; García-Sastre, Adolfo; Schwemmle, Martin; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-07)
      The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.