• Detection and Investigation of Eagle Effect Resistance to Vancomycin in With an ATP-Bioluminescence Assay.

      Jarrad, Angie M; Blaskovich, Mark A T; Prasetyoputri, Anggia; Karoli, Tomislav; Hansford, Karl A; Cooper, Matthew A; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      Vancomycin was bactericidal against Clostridium difficile at eightfold the minimum inhibitory concentration (MIC) using a traditional minimum bactericidal concentration (MBC) assay. However, at higher concentrations up to 64 × MIC, vancomycin displayed a paradoxical “more-drug-kills-less” Eagle effect against C. difficile. To overcome challenges associated with performing the labor-intensive agar-based MBC method under anaerobic growth conditions, we investigated an alternative more convenient ATP-bioluminescence assay to assess the Eagle effect in C. difficile. The commercial BacTiter-GloTM assay is a homogenous method to determine bacterial viability based on quantification of bacterial ATP as a marker for metabolic activity. The ATP-bioluminescence assay was advantageous over the traditional MBC-type assay in detecting the Eagle effect because it reduced assay time and was simple to perform; measurement of viability could be performed in less than 10 min outside of the anaerobic chamber. Using this method, we found C. difficile survived clinically relevant, high concentrations of vancomycin (up to 2048 μg/mL). In contrast, C. difficile did not survive high concentrations of metronidazole or fidaxomicin. The Eagle effect was also detected for telavancin, but not for teicoplanin, dalbavancin, oritavancin, or ramoplanin. All four pathogenic strains of C. difficile tested consistently displayed Eagle effect resistance to vancomycin, but not metronidazole or fidaxomicin. These results suggest that Eagle effect resistance to vancomycin in C. difficile could be more prevalent than previously appreciated, with potential clinical implications. The ATP-Bioluminescence assay can thus be used as an alternative to the agar-based MBC assay to characterize the Eagle effect against a variety of antibiotics, at a wide-range of concentrations, with much greater throughput. This may facilitate improved understanding of Eagle effect resistance and promote further research to understand potential clinical relevance.
    • Diagnosing Zika virus infection against a background of other flaviviruses: Studies in high resolution serological analysis.

      Hansen, Sören; Hotop, Sven-Kevin; Faye, Oumar; Ndiaye, Oumar; Böhlken-Fascher, Susanne; Pessôa, Rodrigo; Hufert, Frank; Stahl-Hennig, Christiane; Frank, Ronald; Czerny, Claus-Peter; et al. (Springer-Nature, 2019-03-06)
      BACKGROUND: Antibody-mediated targeting of regulatory T cell receptors such as CTLA-4 enhances antitumor immune responses against several cancer entities including malignant melanoma. Yet, therapeutic success in patients remains variable underscoring the need for novel combinatorial approaches. METHODS: Here we established a vaccination strategy that combines engagement of the nucleic acid-sensing pattern recognition receptor RIG-I, antigen and CTLA-4 blockade. We used in vitro transcribed 5'-triphosphorylated RNA (3pRNA) to therapeutically target the RIG-I pathway. We performed in vitro functional analysis in bone-marrow derived dendritic cells and investigated RIG-I-enhanced vaccines in different murine melanoma models. FINDINGS: We found that protein vaccination together with RIG-I ligation via 3pRNA strongly synergizes with CTLA-4 blockade to induce expansion and activation of antigen-specific CD8+ T cells that translates into potent antitumor immunity. RIG-I-induced cross-priming of cytotoxic T cells as well as antitumor immunity were dependent on the host adapter protein MAVS and type I interferon (IFN-I) signaling and were mediated by dendritic cells. INTERPRETATION: Overall, our data demonstrate the potency of a novel combinatorial vaccination strategy combining RIG-I-driven immunization with CTLA-4 blockade to prevent and treat experimental melanoma. FUND: German Research Foundation (SFB 1335, SFB 1371), EMBO, Else Kröner-Fresenius-Foundation, German Cancer Aid, European Hematology Association, DKMS Foundation for Giving Life, Dres. Carl Maximilian and Carl Manfred Bayer-Foundation.
    • Differential magnesium implant corrosion coat formation and contribution to bone bonding.

      Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, M; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P; et al. (2017)
      Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017.
    • The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids.

      Howell, B W; Lanier, L M; Frank, R; Gertler, F B; Cooper, J A; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (1999-07)
      Disabled gene products are important for nervous system development in drosophila and mammals. In mice, the Dab1 protein is thought to function downstream of the extracellular protein Reln during neuronal positioning. The structures of Dab proteins suggest that they mediate protein-protein or protein-membrane docking functions. Here we show that the amino-terminal phosphotyrosine-binding (PTB) domain of Dab1 binds to the transmembrane glycoproteins of the amyloid precursor protein (APP) and low-density lipoprotein receptor families and the cytoplasmic signaling protein Ship. Dab1 associates with the APP cytoplasmic domain in transfected cells and is coexpressed with APP in hippocampal neurons. Screening of a set of altered peptide sequences showed that the sequence GYXNPXY present in APP family members is an optimal binding sequence, with approximately 0.5 microM affinity. Unlike other PTB domains, the Dab1 PTB does not bind to tyrosine-phosphorylated peptide ligands. The PTB domain also binds specifically to phospholipid bilayers containing phosphatidylinositol 4P (PtdIns4P) or PtdIns4,5P2 in a manner that does not interfere with protein binding. We propose that the PTB domain permits Dab1 to bind specifically to transmembrane proteins containing an NPXY internalization signal.
    • Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus.

      Kirsch, Philine; Jakob, Valentin; Elgaher, Walid A M; Walt, Christine; Oberhausen, Kevin; Schulz, Thomas F; Empting, Martin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.;HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Chemical Society (ACS), 2020-01-24)
      With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.
    • Discovery pipelines for marine resources: an ocean of opportunity for biotechnology?

      Smith, D; Buddie, A G; Goss, R J M; Overmann, J; Lepleux, C; Brönstrup, M; Kloareg, B; Meiners, T; Brennecke, P; Ianora, A; et al. (Springer, 2019-07-02)
      Marine microbial diversity offers enormous potential for discovery of compounds of crucial importance in healthcare, food security and bioindustry. However, access to it has been hampered by the difficulty of accessing and growing the organisms for study. The discovery and exploitation of marine bioproducts for research and commercial development requires state-of-the-art technologies and innovative approaches. Technologies and approaches are advancing rapidly and keeping pace is expensive and time consuming. There is a pressing need for clear guidance that will allow researchers to operate in a way that enables the optimal return on their efforts whilst being fully compliant with the current regulatory framework. One major initiative launched to achieve this, has been the advent of European Research Infrastructures. Research Infrastructures (RI) and associated centres of excellence currently build harmonized multidisciplinary workflows that support academic and private sector users. The European Marine Biological Research Infrastructure Cluster (EMBRIC) has brought together six such RIs in a European project to promote the blue bio-economy. The overarching objective is to develop coherent chains of high-quality services for access to biological, analytical and data resources providing improvements in the throughput and efficiency of workflows for discovery of novel marine products. In order to test the efficiency of this prototype pipeline for discovery, 248 rarely-grown organisms were isolated and analysed, some extracts demonstrated interesting biochemical properties and are currently undergoing further analysis. EMBRIC has established an overarching and operational structure to facilitate the integration of the multidisciplinary value chains of services to access such resources whilst enabling critical mass to focus on problem resolution.
    • EU-OPENSCREEN-chemical tools for the study of plant biology and resistance mechanisms.

      Meiners, Torsten; Stechmann, Bahne; Frank, Ronald; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-10)
      EU-OPENSCREEN is an academic research infrastructure initiative in Europe for enabling researchers in all life sciences to take advantage of chemical biology approaches to their projects. In a collaborative effort of national networks in 16 European countries, EU-OPENSCREEN will develop novel chemical compounds with external users to address questions in, among other fields, systems and network biology (directed and selective perturbation of signalling pathways), structural biology (compound-target interactions at atomic resolution), pharmacology (early drug discovery and toxicology) and plant biology (response of wild or crop plants to environmental and agricultural substances). EU-OPENSCREEN supports all stages of a tool development project, including assay adaptation, high-throughput screening and chemical optimisation of the 'hit' compounds. All tool compounds and data will be made available to the scientific community. EU-OPENSCREEN integrates high-capacity screening platforms throughout Europe, which share a rationally selected compound collection comprising up to 300,000 (commercial and proprietary compounds collected from European chemists). By testing systematically this chemical collection in hundreds of assays originating from very different biological themes, the screening process generates enormous amounts of information about the biological activities of the substances and thereby steadily enriches our understanding of how and where they act.
    • Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

      Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P; Helmholtz Centre for infection research, Inhoffenstr. 7,38124 Braunschweig, Germany. (2016-09)
      To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016.
    • Evidence for inoculum size and gas interfaces as critical factors in bacterial biofilm formation on magnesium implants in an animal model.

      Rahim, Muhammad Imran; Szafrański, Szymon P; Ingendoh-Tsakmakidis, Alexandra; Stiesch, Meike; Mueller, Peter P; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-11-28)
      Infections of medical implants caused by bacterial biofilms are a major clinical problem. Bacterial colonization is predicted to be prevented by alkaline magnesium surfaces. However, in experimental animal studies, magnesium implants prolonged infections. The reason for this peculiarity likely lies within the ‒still largely hypothetical‒ mechanism by which infection arises. Investigating subcutaneous magnesium implants infected with bioluminescent Pseudomonas aeruginosa via in vivo imaging, we found that the rate of implant infections was critically dependent on a surprisingly high quantity of injected bacteria. At high inocula, bacteria were antibiotic-refractory immediately after infection. High cell densities are known to limit nutrient availability, restricting proliferation and trigger quorum sensing which could both contribute to the rapid initial resistance. We propose that gas bubbles such as those formed during magnesium corrosion, can then act as interfaces that support biofilm formation and permit long-term survival. This model could provide an explanation for the apparent ineffectiveness of innovative contact-dependent bactericidal implant surfaces in patients. In addition, the model points toward air bubbles in tissue, either by inclusion during surgery or by spontaneous gas bubble formation later on, could constitute a key risk factor for clinical implant infections
    • Expansion of functional personalized cells with specific transgene combinations.

      Lipps, Christoph; Klein, Franziska; Wahlicht, Tom; Seiffert, Virginia; Butueva, Milada; Zauers, Jeannette; Truschel, Theresa; Luckner, Martin; Köster, Mario; MacLeod, Roderick; et al. (Springer Nature, 2018-03-08)
      Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.
    • Filovirus antiviral activity of cationic amphiphilic drugs is associated with lipophilicity and ability to induce phospholipidosis.

      Gunesch, Antonia P; Zapatero-Belinchon, Francisco J; Pinkert, Lukas; Steinmann, Eike; Manns, Michael P; Schneider, Gisbert; Pietschmann, Thomas; Brönstrup, Mark; von Hahn, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2020-06-08)
      Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood.We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition.We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analysed correlation of antiviral activity with four chemical properties: pKa, ClogP, molecular weight and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structure (analogues) to strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall 11 out of 45 (24 %) CADs inhibited MARVpp by 40 % or more. The strongest antiviral compounds were dronedarone, triparanol and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP>4), and DIPL. Moreover, pKa and intra-molecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity, but to a lesser extent. We also showed that in contrast to analogues, derivatives had similar antiviral activity as the seed compound dronedarone. Overall, one quarter of CADs inhibits MARVpp entry in vitro and antiviral activity of CADs mostly relies on their hydrophobicity, yet is promoted by the individual structure.
    • Firefly Bioluminescence-Based Detection of ATP

      Jarrad, Angie M,; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (CSIRO Publishing, 2019-06-04)
      Adenosine triphosphate (ATP) bioluminescence is a powerful light-producing phenomenon that occurs in nature in a variety of organisms, with ATP bioluminescence of fireflies one of the most well-known examples. The firefly ATP bioluminescence reaction has been adapted to the laboratory with a wide range of applications that include monitoring cellular processes, antimicrobial susceptibility testing, and the detection of bacterial contamination of environmental surfaces. ATP bioluminescence occurs through a multistep reaction between firefly luciferase, ATP, magnesium salt, and oxygen (Scheme 1).[1] As a simplified overview, luciferyl adenylate 2 is first formed from luciferin 1 and Mg2+-ATP. The luciferyl adenylate 2 is then oxidised with molecular oxygen to form a dioxetanone cyclic peroxide intermediate 3. Following intramolecular conversion to produce electronically excited states of oxyluciferin, the dioxetanone is decarboxylated. Finally, the return of excited oxyluciferin to the ground state 5 results in emission of visible light. For more detailed insights into the reaction mechanism, including alternative reactions and different tautomers of oxyluciferin at varying pH values, readers are referred to additional literature.
    • First Syntheses of Melophlins P, Q, and R, and Effects of Melophlins on the Growth of Microorganisms and Tumor Cells

      Biersack, Bernhard; Diestel, Randi; Jagusch, Carsten; Rapp, Georg; Sasse, Florenz; Schobert, Rainer; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2008-11)
    • From binary to multivalued to continuous models: the lac operon as a case study.

      Franke, Raimo; Theis, Fabian J; Klamt, Steffen; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2010-12-14)
      Using the lac operon as a paradigmatic example for a gene regulatory system in prokaryotes, we demonstrate how qualitative knowledge can be initially captured using simple discrete (Boolean) models and then stepwise refined to multivalued logical models and finally to continuous (ODE) models. At all stages, signal transduction and transcriptional regulation is integrated in the model description. We first show the potential benefit of a discrete binary approach and discuss then problems and limitations due to indeterminacy arising in cyclic networks. These limitations can be partially circumvented by using multilevel logic as generalization of the Boolean framework enabling one to formulate a more realistic model of the lac operon. Ultimately a dynamic description is needed to fully appreciate the potential dynamic behavior that can be induced by regulatory feedback loops. As a very promising method we show how the use of multivariate polynomial interpolation allows transformation of the logical network into a system of ordinary differential equations (ODEs), which then enables the analysis of key features of the dynamic behavior.
    • The full-ORF clone resource of the German cDNA Consortium

      Bechtel, Stephanie; Rosenfelder, Heiko; Duda, Anny; Peter Schmidt, Christian; Ernst, Ute; Wellenreuther, Ruth; Mehrle, Alexander; Schuster, Claudia; Bahr, Andre; Blöcker, Helmut; et al. (2007-10-31)
      Abstract Background With the completion of the human genome sequence the functional analysis and characterization of the encoded proteins has become the next urging challenge in the post-genome era. The lack of comprehensive ORFeome resources has thus far hampered systematic applications by protein gain-of-function analysis. Gene and ORF coverage with full-length ORF clones thus needs to be extended. In combination with a unique and versatile cloning system, these will provide the tools for genome-wide systematic functional analyses, to achieve a deeper insight into complex biological processes. Results Here we describe the generation of a full-ORF clone resource of human genes applying the Gateway cloning technology (Invitrogen). A pipeline for efficient cloning and sequencing was developed and a sample tracking database was implemented to streamline the clone production process targeting more than 2,200 different ORFs. In addition, a robust cloning strategy was established, permitting the simultaneous generation of two clone variants that contain a particular ORF with as well as without a stop codon by the implementation of only one additional working step into the cloning procedure. Up to 92 % of the targeted ORFs were successfully amplified by PCR and more than 93 % of the amplicons successfully cloned. Conclusion The German cDNA Consortium ORFeome resource currently consists of more than 3,800 sequence-verified entry clones representing ORFs, cloned with and without stop codon, for about 1,700 different gene loci. 177 splice variants were cloned representing 121 of these genes. The entry clones have been used to generate over 5,000 different expression constructs, providing the basis for functional profiling applications. As a member of the recently formed international ORFeome collaboration we substantially contribute to generating and providing a whole genome human ORFeome collection in a unique cloning system that is made freely available in the community.
    • Generation of novel-substrate-accepting biphenyl dioxygenases through segmental random mutagenesis and identification of residues involved in enzyme specificity.

      Zielinski, Marco; Kahl, Silke; Standfuss-Gabisch, Christine; Cámara, Beatriz; Seeger, Michael; Hofer, Bernd; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2006-03)
      Aryl-hydroxylating dioxygenases are of interest for the degradation of persistant aromatic pollutants, such as polychlorobiphenyls (PCBs), or as catalysts for the functionalization of aromatic scaffolds. In order to achieve dioxygenation of technical mixtures of PCBs, enzymes with broadened or altered substrate ranges are essential. To alter the substrate specificity of the biphenyl dioxygenase (BphA) of Burkholderia xenovorans LB400, we applied a directed evolution approach that used structure-function relationship data to target random mutageneses to specific segments of the enzyme. The limitation of random amino acid (AA) substitutions to regions that are critical for substrate binding and the exclusion of AA exchanges from positions that are essential for catalytic activity yielded enzyme variants of interest at comparatively high frequencies. After only a single mutagenic cycle, 10 beneficial variants were detected in a library of fewer than 1,000 active enzymes. Compared to the parental BphA, they showed between 5- and 200-fold increased turnover of chlorinated biphenyls, with substituent patterns that rendered them largely recalcitrant to attack by BphA-LB400. Determination of their sequences identified AAs that prevent the acceptance of specific PCBs by the wild-type enzyme, such as Pro334 and Phe384. The results suggest prime targets for subsequent cycles of BphA modification. Correlations with a three-dimensional model of the enzyme indicated that most of the exchanges with major influence on substrate turnover do not involve pocket-lining residues and had not been predictable through structural modeling.
    • High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination.

      Pohla, Heike; Buchner, Alexander; Stadlbauer, Birgit; Frankenberger, Bernhard; Stevanovic, Stefan; Walter, Steffen; Frank, Ronald; Schwachula, Tim; Olek, Sven; Kopp, Joachim; et al. (2013-02-08)
      Our previously reported phase I clinical trial with the allogeneic gene-modified tumor cell line RCC-26/CD80/IL-2 showed that vaccination was well tolerated and feasible in metastatic renal cell carcinoma (RCC) patients. Substantial disease stabilization was observed in most patients despite a high tumor burden at study entry. To investigate alterations in immune responses that might contribute to this effect, we performed an extended immune monitoring that included analysis of reactivity against multiple antigens, cytokine/chemokine changes in serum and determination of the frequencies of immune suppressor cell populations, including natural regulatory T cells (nTregs) and myeloid-derived suppressor cell subsets (MDSCs). An overall immune response capacity to virus-derived control peptides was present in 100% of patients before vaccination. Vaccine-induced immune responses to tumor-associated antigens occurred in 75% of patients, demonstrating the potent immune stimulatory capacity of this generic vaccine. Furthermore, some patients reacted to peptide epitopes of antigens not expressed by the vaccine, showing that epitope-spreading occurred in vivo. Frequencies of nTregs and MDSCs were comparable to healthy donors at the beginning of study. A significant decrease of nTregs was detected after vaccination (p = 0.012). High immune response rates, decreased frequencies of nTregs and a mixed T helper 1/T helper 2 (T(H)1/T(H)2)-like cytokine pattern support the applicability of this RCC generic vaccine for use in combination therapies.
    • High level expression of a recombinant amylosucrase gene and selected properties of the enzyme.

      Schneider, Jens; Fricke, Christin; Overwin, Heike; Hofer, Bernd; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-03)
      Two high-level heterologous expression systems for amylosucrase genes have been constructed. One depends on sigma-70 bacterial RNA polymerase, the other on phage T7 RNA polymerase. Translational fusions were formed between slightly truncated versions of the gene from Neisseria polysaccharea and sequences of expression vectors pQE-81L or pET33b(+), respectively. These constructs were introduced into different Escherichia coli strains. The resulting recombinants yielded up to 170 mg of dissolved enzyme per litre of culture at a moderate cell density of five OD(600). To our knowledge, this is the highest yield per cell described so far for amylosucrases. The recombinant enzymes could rapidly be purified through the use of histidine tags in the N-terminally attached sequences. These segments did not alter catalytic properties and therefore need not be removed for most applications. Investigations with glucose and malto-oligosaccharides of different lengths identified rate-limiting steps in the elongation (acceptor reaction) and truncation (donor reaction) of these substrates. The elongation of maltotriose and its reversal, the truncation of maltotetraose, were found to be particularly slow reactions. Potential reasons are discussed, based on the crystal structure of the enzyme. It is furthermore shown that amylosucrase is able to synthesise mixed disaccharides. All of the glucose epimers mannose, allose, and galactose served as acceptors, yielding between one and three main products. We also demonstrate that, as an alternative to the use of purified amylosucrase, cells of the constructed recombinant strains can be used to carry out glucosylations of acceptors.
    • High-throughput screening and whole genome sequencing identifies an antimicrobially active inhibitor of Vibrio cholerae.

      Sergeev, Galina; Roy, Sambit; Jarek, Michael; Zapolskii, Viktor; Kaufmann, Dieter E; Nandy, Ranjan K; Tegge, Werner (2014)
      Pathogenic serotypes of Vibrio cholerae cause the life-threatening diarrheal disease cholera. The increasing development of bacterial resistances against the known antibiotics necessitates the search for new antimicrobial compounds and targets for this pathogen.
    • Host-induced spermidine production in motile triggers phagocytic uptake.

      Felgner, Sebastian; Preusse, Matthias; Beutling, Ulrike; Stahnke, Stephanie; Pawar, Vinay; Rohde, Manfred; Brönstrup, Mark; Stradal, Theresia; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (elifeSciences, 2020-09-22)
      Exploring the complexity of host-pathogen communication is vital to understand why microbes persist within a host, while others are cleared. Here, we employed a dual-sequencing approach to unravel conversational turn-taking of dynamic host-pathogen communications. We demonstrate that upon hitting a host cell, motile Pseudomonas aeruginosa induce a specific gene expression program. This results in the expression of spermidine on the surface, which specifically activates the PIP3-pathway to induce phagocytic uptake into primary or immortalized murine cells. Non-motile bacteria are more immunogenic due to a lower expression of arnT upon host-cell contact, but do not produce spermidine and are phagocytosed less. We demonstrate that not only the presence of pathogen inherent molecular patterns induces immune responses, but that bacterial motility is linked to a host-cell-induced expression of additional immune modulators. Our results emphasize on the value of integrating microbiological and immunological findings to unravel complex and dynamic host-pathogen interactions.