• Occupation-Associated Fatal Limbic Encephalitis Caused by Variegated Squirrel Bornavirus 1, Germany, 2013.

      Tappe, Dennis; Schlottau, Kore; Cadar, Daniel; Hoffmann, Bernd; Balke, Lorenz; Bewig, Burkhard; Hoffmann, Donata; Eisermann, Philip; Fickenscher, Helmut; Krumbholz, Andi; et al. (2018-06-01)
      Limbic encephalitis is commonly regarded as an autoimmune-mediated disease. However, after the recent detection of zoonotic variegated squirrel bornavirus 1 in a Prevost's squirrel (Callosciurus prevostii) in a zoo in northern Germany, we retrospectively investigated a fatal case in an autoantibody-seronegative animal caretaker who had worked at that zoo. The virus had been discovered in 2015 as the cause of a cluster of cases of fatal encephalitis among breeders of variegated squirrels (Sciurus variegatoides) in eastern Germany. Molecular assays and immunohistochemistry detected a limbic distribution of the virus in brain tissue of the animal caretaker. Phylogenetic analyses demonstrated a spillover infection from the Prevost's squirrel. Antibodies against bornaviruses were detected in the patient's cerebrospinal fluid by immunofluorescence and newly developed ELISAs and immunoblot. The putative antigenic epitope was identified on the viral nucleoprotein. Other zoo workers were not infected; however, avoidance of direct contact with exotic squirrels and screening of squirrels are recommended.
    • Olfaction, taste and chemoreception: scientific evidence replaces "Essays in biopoetry".

      Appendino, Giovanni; Brönstrup, Mark; Kubanek, Julia M; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    • Optimization of Artificial Siderophores as Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections.

      Peukert, Carsten; Langer, Laura N B; Wegener, Sophie M; Tutov, Anna; Bankstahl, Jens P; Karge, Bianka; Bengel, Frank M; Ross, Tobias L; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Chemical Society (ACS), 2021-08-09)
      The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
    • The Peptide Chain Release Factor Methyltransferase PrmC Influences the Pseudomonas aeruginosa PA14 Endo- and Exometabolome.

      Depke, Tobias; Häussler, Susanne; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-10-18)
      Pseudomonas aeruginosa is one of the most important nosocomial pathogens and understanding its virulence is the key to effective control of P. aeruginosa infections. The regulatory network governing virulence factor production in P. aeruginosa is exceptionally complex. Previous studies have shown that the peptide chain release factor methyltransferase PrmC plays an important role in bacterial pathogenicity. Yet, the underlying molecular mechanism is incompletely understood. In this study, we used untargeted liquid and gas chromatography coupled to mass spectrometry to characterise the metabolome of a prmC defective P. aeruginosa PA14 strain in comparison with the corresponding strain complemented with prmC in trans. The comprehensive metabolomics data provided new insight into the influence of prmC on virulence and metabolism. prmC deficiency had broad effects on the endo- and exometabolome of P. aeruginosa PA14, with a marked decrease of the levels of aromatic compounds accompanied by reduced precursor supply from the shikimate pathway. Furthermore, a pronounced decrease of phenazine production was observed as well as lower abundance of alkylquinolones. Unexpectedly, the metabolomics data showed no prmC-dependent effect on rhamnolipid production and an increase in pyochelin levels. A putative virulence biomarker identified in a previous study was significantly less abundant in the prmC deficient strain.
    • Peptide-mediated interference with influenza A virus polymerase.

      Ghanem, Alexander; Mayer, Daniel; Chase, Geoffrey; Tegge, Werner; Frank, Ronald; Kochs, Georg; García-Sastre, Adolfo; Schwemmle, Martin; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-07)
      The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.
    • Phenotypic plasticity in a willow leaf beetle depends on host plant species: release and recognition of beetle odors.

      Austel, Nadine; Reinecke, Andreas; Björkman, Christer; Hilker, Monika; Meiners, Torsten; Helmholtz-Centre for Infection Research, Inhoffen-Str. 7, Department of Chemical Biology, 38124 Braunschweig, Germany. (2015-02)
      Aggregation behavior of herbivorous insects is mediated by a wide range of biotic and abiotic factors. It has been suggested that aggregation behavior of the blue willow leaf beetle Phratora vulgatissima is mediated by both host plant odor and by odor released by the beetles. Previous studies show that the beetles respond to plant odors according to their prior host plant experiences. Here, we analyzed the effect of the host plant species on odor released and perceived by adult P. vulgatissima. The major difference between the odor of beetles feeding on salicin-rich and salicin-poor host plants was the presence of salicylaldehyde in the odor of the former, where both males and females released this compound. Electrophysiological studies showed that the intensity of responses to single components of odor released by beetles was sex specific and dependent on the host plant species with which the beetles were fed. Finally, behavioral studies revealed that males feeding on salicin-rich willows were attracted by salicylaldehyde, whereas females did not respond behaviorally to this compound, despite showing clear antennal responses to it. Finally, the ecological relevance of the influence of a host plant species on the plasticity of beetle odor chemistry, perception, and behavior is discussed.
    • Phosphatidylinositol 3'-kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis.

      Buntru, Alexander; Kopp, Kathrin; Voges, Maike; Frank, Ronald; Bachmann, Verena; Hauck, Christof R; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-03-18)
      Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.
    • Reinvestigation of the Nitration of Tri­chloroethene - Subsequent Reactions of the Products and Evaluation of Their Anti­microbial and Antifungal Activity

      Zapol'skii, Viktor A.; Namyslo, Jan C.; Sergeev, Galina; Brönstrup, Mark; Gjikaj, Mimoza; Kaufmann, Dieter E. (2015-12)
    • SAR Studies of the Leupyrrins: Design and Total Synthesis of Highly Potent Simplified Leupylogs.

      Wosniok, Paul R; Knopf, Christopher; Dreisigacker, Sandra; Orozco-Rodriguez, J Manuel; Hinkelmann, Bettina; Mueller, Peter P; Brönstrup, Mark; Menche, Dirk; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-11-11)
      Invited for the cover of this issue is the group of Dirk Menche at the University of Bonn. The image depicts the natural product leupyrrin A1 and a synthetic leupylog in balance on an IC50 weighing scale. Read the full text of the article at 10.1002/chem.202002622.
    • SAR studies on hydropentalene derivatives--Important core units of biologically active tetramic acid macrolactams and ptychanolides.

      Lutz, Vanessa; Mannchen, Fabian; Krebs, Michael; Park, Natja; Krüger, Claudia; Raja, Aruna; Sasse, Florenz; Baro, Angelika; Laschat, Sabine; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-01)
      Structurally diverse bicyclo[3.3.0]octanes were prepared and tested for their biological activity. Both the antiproliferative activity and the results of phenotypic characterization varied with the substitution patterns. Two derivatives displayed high inhibitory (IC50 ≤3μM) activity against the L-929 cell line, but differed in their mode of action. A cluster analysis with impedance profiling data showed the two compounds in relationship to microtubule interfering compounds. In PtK2 cells treated with both derivatives a perturbing effect on the microtubular network was observed, whereas the actin cytoskeleton in incubated PtK2 cells was disturbed only by one compound. The effects on tubulin and actin polymerization could be confirmed by in vitro polymerization experiments.
    • Screening and characterization of molecules that modulate the biological activity of IFNs-I.

      Bürgi, Milagros; Zapol'skii, Viktor A; Hinkelmann, Bettina; Köster, Mario; Kaufmann, Dieter E; Sasse, Florenz; Hauser, Hansjörg; Etcheverrigaray, Marina; Kratje, Ricardo; Bollati-Fogolín, Mariela; et al. (2016-09-10)
      Type I Interferons (IFNs-I) are species-specific glycoproteins which play an important role as primary defence against viral infections and that can also modulate the adaptive immune system. In some autoimmune diseases, interferons (IFNs) are over-produced. IFNs are widely used as biopharmaceuticals for a variety of cancer indications, chronic viral diseases, and for their immuno-modulatory action in patients with multiple sclerosis; therefore, increasing their therapeutic efficiency and decreasing their side effects is of high clinical value. In this sense, it is interesting to find molecules that can modulate the activity of IFNs. In order to achieve that, it was necessary to establish a simple, fast and robust assay to analyze numerous compounds simultaneously. We developed four reporter gene assays (RGAs) to identify IFN activity modulator compounds by using WISH-Mx2/EGFP, HeLa-Mx2/EGFP, A549-Mx2/EGFP, and HEp2-Mx2/EGFP reporter cell lines (RCLs). All of them present a Z' factor higher than 0.7. By using these RGAs, natural and synthetic compounds were analyzed simultaneously. A total of 442 compounds were studied by the Low Throughput Screening (LTS) assay using the four RCLs to discriminate between their inhibitory or enhancing effects on IFN activity. Some of them were characterized and 15 leads were identified. Finally, one promising candidate with enhancing effect on IFN-α/-β activity and five compounds with inhibitory effect were described.
    • A selective 3-acylation of tetramic acids and the first synthesis of ravenic acid.

      Schlenk, Andrea; Diestel, Randi; Sasse, Florenz; Schobert, Rainer; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2010-02-22)
      3-Acyltetramic acids, including delicate 3-oligoenoyl derivatives, such as the Penicillium metabolite ravenic acid, were prepared in two high-yielding steps. Reaction of tetramic acids with the ylide Ph(3)PCCO afforded exclusively the corresponding 3-acylylidenetetramic acids. These were amenable to Wittig olefinations with aliphatic, aromatic, saturated and unsaturated aldehydes after deprotonation with KOtBu. Due to its simplicity, selectivity and tolerance of pH-sensitive groups this method is superior to the established acylation protocols by Jones and Yoshii. It is also applicable to the synthesis of 3-acyltetronic acids. The new 3-oligoenoyl tetramic acids exhibited structure-dependent antimicrobial and cytotoxic activity.
    • Semisynthesis and biological evaluation of amidochelocardin derivatives as broad-spectrum antibiotics.

      Grandclaudon, Charlotte; Birudukota, N V Suryanarayana; Elgaher, Walid A M; Jumde, Ravindra P; Yahiaoui, Samir; Arisetti, Nanaji; Hennessen, Fabienne; Hüttel, Stephan; Stadler, Marc; Herrmann, Jennifer; et al. (Elsevier, 2019-12-20)
      To address the global challenge of emerging antimicrobial resistance, the hitherto most successful strategy to new antibiotics has been the optimization of validated natural products; most of these efforts rely on semisynthesis. Herein, we report the semisynthetic modification of amidochelocardin, an atypical tetracycline obtained via genetic engineering of the chelocardin producer strain. We report modifications at C4, C7, C10 and C11 by the application of methylation, acylation, electrophilic substitution, and oxidative C-C coupling reactions. The antibacterial activity of the reaction products was tested against a panel of Gram-positive and Gram-negative pathogens. The emerging structure-activity relationships (SARs) revealed that positions C7 and C10 are favorable anchor points for the semisynthesis of optimized derivatives. The observed SAR was different from that known for tetracyclines, which underlines the pronounced differences between the two compound classes.
    • A simplified LC-MS/MS method for the quantification of the cardiovascular disease biomarker trimethylamine-N-oxide and its precursors

      Rox, Katharina; Rath, Silke; Pieper, Dietmar H.; Vital, Marius; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier BV, 2021-03)
      Trimethylamine-N-oxide (TMAO) has emerged as a potential biomarker for atherosclerosis and the development of cardiovascular diseases (CVDs). Although several clinical studies have shown striking associations of TMAO levels with atherosclerosis and CVDs, TMAO determinations are not clinical routine yet. The current methodology relies on isotope-labeled internal standards, which adds to pre-analytical complexity and costs for the quantification of TMAO and its precursors carnitine, betaine or choline. Here, we report a liquid chromatography-tandem mass spectrometry based method that is fast (throughput up to 240 samples/day), consumes low sample volumes (e.g., from a finger prick), and does not require isotope-labeled standards. We circumvented the analytical problem posed by the presence of endogenous TMAO and its precursors in human plasma by using an artificial plasma matrix for calibration. We cross-validated the results obtained using an artificial matrix with those using mouse plasma matrix and demonstrated that TMAO, carnitine, betaine and choline were accurately quantified in ‘real-life’ human plasma samples from healthy volunteers, obtained either from a finger prick or from venous puncture. Additionally, we assessed the stability of samples stored at −20 °C and room temperature. Whereas all metabolites were stable at −20 °C, increasing concentrations of choline were determined when stored at room temperature. Our method will facilitate the establishment of TMAO as a routine clinical biomarker in hematology in order to assess the risk for CVDs development, or to monitor disease progression and intervention effects.
    • Single-cell phenotypic characterization of Staphylococcus aureus with fluorescent triazole urea activity-based probes.

      Chen, Linhai; Keller, Laura J; Cordasco, Edward A; Bogyo, Matthew; Lentz, Christian S; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-02-15)
      Phenotypically distinct cellular (sub)populations are clinically relevant for virulence and antibiotic resistance of a bacterial pathogen, but functionally different cells are usually indistinguishable from each other. Here, we introduce fluorescent activity-based probes as chemical tools for single-cell phenotypic characterization of enzyme activity levels in Staphylococcus aureus. We screened a 1,2,3-triazole urea library to identify selective inhibitors of fluorophosphonate-binding serine hydrolases and lipases in S. aureus and synthesized target-selective activity-based probes. Molecular imaging and activity-based protein profiling studies with these probes revealed a dynamic network within this enzyme family involving compensatory regulation of specific family members and exposed single-cell phenotypic heterogeneity. We propose chemical probe labeling of enzymatic activities as a generalizable method for phenotyping of bacterial cells at the population and single-cell level.
    • Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity.

      Koutsoudakis, George; Romero-Brey, Inés; Berger, Carola; Pérez-Vilaró, Gemma; Monteiro Perin, Paula; Vondran, Florian Wolfgang Rudolf; Kalesse, Markus; Harmrolfs, Kirsten; Müller, Rolf; Martinez, Javier P; et al. (2015-06-10)
      Soraphen A (SorA) is a myxobacterial metabolite that inhibits the acetyl-CoA carboxylase, a key enzyme in lipid biosynthesis. We have previously identified SorA to efficiently inhibit the human immunodeficiency virus (HIV). The aim of the present study was to evaluate the capacity of SorA and analogues to inhibit hepatitis C virus (HCV) infection.
    • Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses.

      Ahsendorf, Henrike P; Gan, Li L; Eltom, Kamal H; Abd El Wahed, Ahmed; Hotop, Sven-Kevin; Roper, Rachel L; Beutling, Ulrike; Broenstrup, Mark; Stahl-Hennig, Christiane; Hoelzle, Ludwig E; et al. (MPDI, 2019-05-29)
      The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32-39, #1B: aa 28-33, #1C: aa 26-31, #1D: 28-34, #4: aa 9-14, and #5: aa 68-71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A-D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5-200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A-D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
    • Subcellular Quantification of Uptake in Gram-Negative Bacteria.

      Prochnow, Hans; Fetz, Verena; Hotop, Sven-Kevin; García-Rivera, Mariel A; Heumann, Axel; Brönstrup, Mark; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (ACS Publications, 2019-02-05)
      Infections by Gram-negative pathogens represent a major health care issue of growing concern due to a striking lack of novel antibacterial agents over the course of the last decades. The main scientific problem behind the rational optimization of novel antibiotics is our limited understanding of small molecule translocation into, and their export from, the target compartments of Gram-negative species. To address this issue, a versatile, label-free assay to determine the intracellular localization and concentration of a given compound has been developed for Escherichia coli and its efflux-impaired ΔTolC mutant. The assay applies a fractionation procedure to antibiotic-treated bacterial cells to obtain periplasm, cytoplasm, and membrane fractions of high purity, as demonstrated by Western Blots of compartment-specific marker proteins. This is followed by an LC-MS/MS-based quantification of antibiotic content in each compartment. Antibiotic amounts could be converted to antibiotic concentrations by assuming that an E. coli cell is a cylinder flanked by two half spheres and calculating the volumes of bacterial compartments. The quantification of antibiotics from different classes, namely ciprofloxacin, tetracycline, trimethoprim, and erythromycin, demonstrated pronounced differences in uptake quantities and distribution patterns across the compartments. For example, in the case of ciprofloxacin, a higher amount of compound was located in the cytoplasm than in the periplasm (592 ± 50 pg vs 277 ± 13 pg per 3.9 × 10
    • Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

      Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-15)
      A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations.
    • Synthesis of the AB ring system of clifednamide utilizing Claisen rearrangement and Diels-Alder reaction as key steps.

      Loke, Inga; Bentzinger, Guillaume; Holz, Julia; Raja, Aruna; Bhasin, Aman; Sasse, Florenz; Köhn, Andreas; Schobert, Rainer; Laschat, Sabine; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-01-21)
      In order to construct the functionalized AB ring system of clifednamide, member of the class of macrocyclic tetramic acid lactams, a synthesis was developed which utilized an Ireland-Claisen rearrangement and an intramolecular Diels-Alder reaction. Starting from di-O-isopropylidene-d-mannitol the allyl carboxylate precursor for the sigmatropic rearrangement was prepared. This rearrangement proceeded diastereoselectively only in the presence of an allyl silyl ether instead of the parent enone in the side chain, as suggested by deuteration experiments. A subsequent Diels-Alder reaction yielded the target ethyl hexahydro-1H-indene-carboxylate with high diastereoselectivity. Quantum-chemical investigations of this intramolecular Diels-Alder reaction support the proposed configuration of the final product.