• Adaptation of Dinoroseobacter shibae to oxidative stress and the specific role of RirA.

      Beier, Nicole; Kucklick, Martin; Fuchs, Stephan; Mustafayeva, Ayten; Behringer, Maren; Härtig, Elisabeth; Jahn, Dieter; Engelmann, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2021-03-29)
      Dinoroseobacter shibae living in the photic zone of marine ecosystems is frequently exposed to oxygen that forms highly reactive species. Here, we analysed the adaptation of D. shibae to different kinds of oxidative stress using a GeLC-MS/MS approach. D. shibae was grown in artificial seawater medium in the dark with succinate as sole carbon source and exposed to hydrogen peroxide, paraquat or diamide. We quantified 2580 D. shibae proteins. 75 proteins changed significantly in response to peroxide stress, while 220 and 207 proteins were differently regulated by superoxide stress and thiol stress. As expected, proteins like thioredoxin and peroxiredoxin were among these proteins. In addition, proteins involved in bacteriochlophyll biosynthesis were repressed under disulfide and superoxide stress but not under peroxide stress. In contrast, proteins associated with iron transport accumulated in response to peroxide and superoxide stress. Interestingly, the iron-responsive regulator RirA in D. shibae was downregulated by all stressors. A rirA deletion mutant showed an improved adaptation to peroxide stress suggesting that RirA dependent proteins are associated with oxidative stress resistance. Altogether, 139 proteins were upregulated in the mutant strain. Among them are proteins associated with protection and repair of DNA and proteins (e. g. ClpB, Hsp20, RecA, and a thioredoxin like protein). Strikingly, most of the proteins involved in iron metabolism such as iron binding proteins and transporters were not part of the upregulated proteins. In fact, rirA deficient cells were lacking a peroxide dependent induction of these proteins that may also contribute to a higher cell viability under these conditions.
    • Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis.

      Zühlke, Daniela; Dörries, Kirsten; Bernhardt, Jörg; Maaß, Sandra; Muntel, Jan; Liebscher, Volkmar; Pané-Farré, Jan; Riedel, Katharina; Lalk, Michael; Völker, Uwe; et al. (2016)
      Absolute protein quantification was applied to follow the dynamics of the cytoplasmic proteome of Staphylococcus aureus in response to long-term oxygen starvation. For 1,168 proteins, the majority of all expressed proteins, molecule numbers per cell have been determined to monitor the cellular investments in single branches of bacterial life for the first time. In the presence of glucose the anaerobic protein pattern is characterized by increased amounts of glycolytic and fermentative enzymes such as Eno, GapA1, Ldh1, and PflB. Interestingly, the ferritin-like protein FtnA belongs to the most abundant proteins during anaerobic growth. Depletion of glucose finally leads to an accumulation of different enzymes such as ArcB1, ArcB2, and ArcC2 involved in arginine deiminase pathway. Concentrations of 29 exo- and 78 endometabolites were comparatively assessed and have been integrated to the metabolic networks. Here we provide an almost complete picture on the response to oxygen starvation, from signal transduction pathways to gene expression pattern, from metabolic reorganization after oxygen depletion to beginning cell death and lysis after glucose exhaustion. This experimental approach can be considered as a proof of principle how to combine cell physiology with quantitative proteomics for a new dimension in understanding simple life processes as an entity.
    • Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.

      Becher, Dörte; Bernhardt, Jörg; Fuchs, Stephan; Riedel, Katharina; Ernst-Moritz-Arndt-University of Greifswald, Institute of Microbiology, Greifswald, Germany. (2013-10)
      Soil- and litter-borne microorganisms vitally contribute to biogeochemical cycles. However, changes in environmental parameters but also human interferences may alter species composition and elicit alterations in microbial activities. Soil and litter metaproteomics, implying the assignment of soil and litter proteins to specific phylogenetic and functional groups, has a great potential to provide essential new insights into the impact of microbial diversity on soil ecosystem functioning. This article will illuminate challenges and perspectives of current soil and litter metaproteomics research, starting with an introduction to an appropriate experimental design and state-of-the-art proteomics methodologies. This will be followed by a summary of important studies aimed at (i) the discovery of the major biotic drivers of leaf litter decomposition, (ii) metaproteomics analyses of rhizosphere-inhabiting microbes, and (iii) global approaches to study bioremediation processes. The review will be closed by a brief outlook on future developments and some concluding remarks, which should assist the reader to develop successful concepts for soil and litter metaproteomics studies.
    • smORFer: a modular algorithm to detect small ORFs in prokaryotes.

      Bartholomäus, Alexander; Kolte, Baban; Mustafayeva, Ayten; Goebel, Ingrid; Fuchs, Stephan; Benndorf, Dirk; Engelmann, Susanne; Ignatova, Zoya; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford Academic, 2021-06-14)
      Emerging evidence places small proteins (≤50 amino acids) more centrally in physiological processes. Yet, their functional identification and the systematic genome annotation of their cognate small open-reading frames (smORFs) remains challenging both experimentally and computationally. Ribosome profiling or Ribo-Seq (that is a deep sequencing of ribosome-protected fragments) enables detecting of actively translated open-reading frames (ORFs) and empirical annotation of coding sequences (CDSs) using the in-register translation pattern that is characteristic for genuinely translating ribosomes. Multiple identifiers of ORFs that use the 3-nt periodicity in Ribo-Seq data sets have been successful in eukaryotic smORF annotation. They have difficulties evaluating prokaryotic genomes due to the unique architecture (e.g. polycistronic messages, overlapping ORFs, leaderless translation, non-canonical initiation etc.). Here, we present a new algorithm, smORFer, which performs with high accuracy in prokaryotic organisms in detecting putative smORFs. The unique feature of smORFer is that it uses an integrated approach and considers structural features of the genetic sequence along with in-frame translation and uses Fourier transform to convert these parameters into a measurable score to faithfully select smORFs. The algorithm is executed in a modular way, and dependent on the data available for a particular organism, different modules can be selected for smORF search.
    • Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach.

      Fuchs, Stephan; Kucklick, Martin; Lehmann, Erik; Beckmann, Alexander; Wilkens, Maya; Kolte, Baban; Mustafayeva, Ayten; Ludwig, Tobias; Diwo, Maurice; Wissing, Josef; et al. (PLOS, 2021-06-01)
      Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.