• Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β.

      Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.
    • Specific serum IgG at diagnosis of Staphylococcus aureus bloodstream invasion is correlated with disease progression.

      Stentzel, Sebastian; Sundaramoorthy, Nandakumar; Michalik, Stephan; Nordengrün, Maria; Schulz, Sarah; Kolata, Julia; Kloppot, Peggy; Engelmann, Susanne; Steil, Leif; Hecker, Michael; et al. (2015-07-05)
      Although Staphylococcus aureus is a prominent cause of infections, no vaccine is currently available. Active vaccination relies on immune memory, a core competence of the adaptive immune system. To elucidate whether adaptive immunity can provide protection from serious complications of S. aureus infection, a prospective observational study of 44 patients with S. aureus infection complicated by bacteremia was conducted. At diagnosis, serum IgG binding to S. aureus extracellular proteins was quantified on immunoblots and with Luminex-based FLEXMAP 3D™ assays comprising 64 recombinant S. aureus proteins. Results were correlated with the course of the infection with sepsis as the main outcome variable. S. aureus-specific serum IgG levels at diagnosis of S. aureus infection were lower in patients developing sepsis than in patients without sepsis (P<0.05). The pattern of IgG binding to eight selected S. aureus proteins correctly predicted the disease course in 75% of patients. Robust immune memory of S. aureus was associated with protection from serious complications of bacterial invasion. Serum IgG binding to eight conserved S. aureus proteins enabled stratification of patients with high and low risk of sepsis early in the course of S. aureus infections complicated by bacteremia.
    • Extracellular milieu grossly alters pathogen-specific immune response of mammary epithelial cells.

      Bauer, Isabel; Günther, Juliane; Wheeler, Thomas T; Engelmann, Susanne; Seyfert, Hans-Martin; Helmholtz Center for Infection Research (2015)
      Considerably divergent data have been published from attempts to model the E. coli vs. S. aureus specific immune reaction of the udder using primary cultures of bovine mammary epithelial cells from cows (pbMEC). Some groups reported a swift, strong and transient inflammatory response against challenges with E. coli and only a weak and retarded response against S. aureus, in agreement with the respective reaction of the udder. Others found almost the reverse. Presence or absence of fetal calf serum distinguished the experimental setting between both groups. We examined here if this causes the divergent reaction of the pbMEC towards both pathogen species. We challenged pbMEC with proteins from heat killed E. coli or S. aureus pathogens or purified TLR2 and TLR4 ligands. The stimuli were applied in normal growth medium with (SM10) or without (SM0) 10% fetal calf serum, or in the basal medium supplemented with 10 mg/ml milk proteins (SM Milk).
    • A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems.

      Halbedel, Sven; Reiss, Swantje; Hahn, Birgit; Albrecht, Dirk; Mannala, Gopala Krishna; Chakraborty, Trinad; Hain, Torsten; Engelmann, Susanne; Flieger, Antje (2014-11)
      Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein.
    • Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.

      Becher, Dörte; Bernhardt, Jörg; Fuchs, Stephan; Riedel, Katharina; Ernst-Moritz-Arndt-University of Greifswald, Institute of Microbiology, Greifswald, Germany. (2013-10)
      Soil- and litter-borne microorganisms vitally contribute to biogeochemical cycles. However, changes in environmental parameters but also human interferences may alter species composition and elicit alterations in microbial activities. Soil and litter metaproteomics, implying the assignment of soil and litter proteins to specific phylogenetic and functional groups, has a great potential to provide essential new insights into the impact of microbial diversity on soil ecosystem functioning. This article will illuminate challenges and perspectives of current soil and litter metaproteomics research, starting with an introduction to an appropriate experimental design and state-of-the-art proteomics methodologies. This will be followed by a summary of important studies aimed at (i) the discovery of the major biotic drivers of leaf litter decomposition, (ii) metaproteomics analyses of rhizosphere-inhabiting microbes, and (iii) global approaches to study bioremediation processes. The review will be closed by a brief outlook on future developments and some concluding remarks, which should assist the reader to develop successful concepts for soil and litter metaproteomics studies.