Recent Submissions

  • A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover.

    Moreno, Hector; Rastrojo, Alberto; Pryce, Rhys; Fedeli, Chiara; Zimmer, Gert; Bowden, Thomas A; Gerold, Gisa; Kunz, Stefan; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-12-28)
    A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts.
  • Heparan Sulfate Is a Cellular Receptor for Enteric Human Adenoviruses.

    Rajan, Anandi; Palm, Elin; Trulsson, Fredrik; Mundigl, Sarah; Becker, Miriam; Persson, B David; Frängsmyr, Lars; Lenman, Annasara; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MDPI, 2021-02-14)
    Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-associated mortality in children under the age of five, but the mechanisms by which they infect host cells are poorly understood. HAdVs initiate infection through interactions between the knob domain of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41 possess two different fiber proteins-a long fiber and a short fiber. Whereas the long fiber binds to the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells. Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and add to the understanding of the function of the short fibers. These results may also be useful for antiviral drug development and the utilization of enteric HAdVs for clinical applications such as vaccine development.
  • Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination.

    Adamek, Mikolaj; Davies, Jonathan; Beck, Alexander; Jordan, Lisa; Becker, Anna M; Mojzesz, Miriam; Rakus, Krzysztof; Rumiac, Typhaine; Collet, Bertrand; Brogden, Graham; et al. (Frontiers, 2021-02-24)
    Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
  • SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface.

    Bertoglio, Federico; Meier, Doris; Langreder, Nora; Steinke, Stephan; Rand, Ulfert; Simonelli, Luca; Heine, Philip Alexander; Ballmann, Rico; Schneider, Kai-Thomas; Roth, Kristian Daniel Ralph; et al. (NPG, 2021-03-11)
    COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.
  • OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation.

    Koschel, Josephin; Nishanth, Gopala; Just, Sissy; Harit, Kunjan; Kröger, Andrea; Deckert, Martina; Naumann, Michael; Schlüter, Dirk; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2021-03-12)
    In bacterial and sterile inflammation of the liver, hepatocyte apoptosis is, in contrast to necroptosis, a common feature. The molecular mechanisms preventing hepatocyte necroptosis and the potential consequences of hepatocyte necroptosis are largely unknown. Apoptosis and necroptosis are critically regulated by the ubiquitination of signaling molecules but especially the regulatory function of deubiquitinating enzymes (DUBs) is imperfectly defined. Here, we addressed the role of the DUB OTU domain aldehyde binding-1 (OTUB1) in hepatocyte cell death upon both infection with the hepatocyte-infecting bacterium Listeria monocytogenes (Lm) and D-Galactosamine (DGal)/Tumor necrosis factor (TNF)-induced sterile inflammation. Combined in vivo and in vitro experiments comprising mice lacking OTUB1 specifically in liver parenchymal cells (OTUB1LPC-KO) and human OTUB1-deficient HepG2 cells revealed that OTUB1 prevented hepatocyte necroptosis but not apoptosis upon infection with Lm and DGal/TNF challenge. Lm-induced necroptosis in OTUB1LPC-KO mice resulted in increased alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release and rapid lethality. Treatment with the receptor-interacting serine/threonine-protein kinase (RIPK) 1 inhibitor necrostatin-1s and deletion of the pseudokinase mixed lineage kinase domain-like protein (MLKL) prevented liver damage and death of infected OTUB1LPC-KO mice. Mechanistically, OTUB1 reduced K48-linked polyubiquitination of the cellular inhibitor of apoptosis 1 (c-IAP1), thereby diminishing its degradation. In the absence of OTUB1, c-IAP1 degradation resulted in reduced K63-linked polyubiquitination and increased phosphorylation of RIPK1, RIPK1/RIPK3 necrosome formation, MLKL-phosphorylation and hepatocyte death. Additionally, OTUB1-deficiency induced RIPK1-dependent extracellular-signal-regulated kinase (ERK) activation and TNF production in Lm-infected hepatocytes. Collectively, these findings identify OTUB1 as a novel regulator of hepatocyte-intrinsic necroptosis and a critical factor for survival of bacterial hepatitis and TNF challenge.
  • Contact-dependent transmission of Langat and tick-borne encephalitis virus in type I interferon receptor-1 deficient mice.

    Schreier, Sarah; Cebulski, Kristin; Kröger, Andrea; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Society for Microbiology, 2021-01-27)
    Tick-borne encephalitis virus (TBEV) is primarily transmitted to humans through tick bites or oral consumption of accordingly contaminated unpasteurized milk or milk products. The detection of TBEV RNA in various body fluids in immunosuppressed human patients is documented. However, the risk of direct contact exposure remains unclear. Interferon-alpha receptor-1 deficient (Ifnar1-/- ) mice, which are lacking the interferon-α/β responses, develop neurologic manifestations after infection with TBEV and Langat virus (LGTV). We showed that subcutaneous, intranasal, and peroral infection of LGTV lead to disease, whereas mice with intragastric application of LGTV showed no disease signs. With LGTV infected mice exhibit seroconversion and significant viral RNA levels was detected in saliva, eye smear, feces and urine. As a result, TBEV and LGTV are transmitted between mice from infected to naïve co-caged sentinel animals. Although intranasal inoculation of LGTV is entirely sufficient to establish the disease in mice, the virus is not transmitted by aerosols. These pooled results from animal models highlight the risks of exposure to TBEV contaminants and the possibility for close contact transmission of TBEV in interferon-alpha receptor-1 deficient laboratory mice.Importance Tick-borne encephalitis is a severe disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). Every year between 10,000-12,000 people become infected with this flavivirus. The TBEV is usually transmitted to humans via the bite of a tick, but infections due to consumption of infectious milk products are increasingly being reported. Since there is no therapy for an TBEV infection and mechanisms of virus persistence in reservoir animals are unclear, it is important to highlight the risk of exposure to TBEV contaminants and know possible routes of transmission of this virus. The significance of our research is in identifying other infection routes of TBEV and LGTV, and the possibility of close contact transmission.
  • The structure of enteric human adenovirus 41-A leading cause of diarrhea in children.

    Rafie, K; Lenman, A; Fuchs, J; Rajan, A; Arnberg, N; Carlson, L-A; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Association for the Advancement of Science, 2021-01-08)
    Human adenovirus (HAdV) types F40 and F41 are a prominent cause of diarrhea and diarrhea-associated mortality in young children worldwide. These enteric HAdVs differ notably in tissue tropism and pathogenicity from respiratory and ocular adenoviruses, but the structural basis for this divergence has been unknown. Here, we present the first structure of an enteric HAdV-HAdV-F41-determined by cryo-electron microscopy to a resolution of 3.8 Å. The structure reveals extensive alterations to the virion exterior as compared to nonenteric HAdVs, including a unique arrangement of capsid protein IX. The structure also provides new insights into conserved aspects of HAdV architecture such as a proposed location of core protein V, which links the viral DNA to the capsid, and assembly-induced conformational changes in the penton base protein. Our findings provide the structural basis for adaptation of enteric HAdVs to a fundamentally different tissue tropism.
  • In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli.

    Korf, Imke H E; Kittler, Sophie; Bierbrodt, Anna; Mengden, Ruth; Rohde, Christine; Rohde, Manfred; Kroj, Andrea; Lehnherr, Tatiana; Fruth, Angelika; Flieger, Antje; et al. (MDPI, 2020-12-19)
    Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
  • Cohort Profile: The LoewenKIDS Study - life-course perspective on infections, the microbiome and the development of the immune system in early childhood.

    Gottschick, Cornelia; Raupach-Rosin, Heike; Langer, Susan; Hassan, Lamiaa; Horn, Johannes; Dorendorf, Evelyn; Caputo, Mahrrouz; Bittner, Martina; Beier, Lea; Rübsamen, Nicole; et al. (Oxford Academic, 2019-02-27)
    [Noabstract available]
  • Hepatitis C reference viruses highlight potent antibody responses and diverse viral functional interactions with neutralising antibodies.

    Bankwitz, Dorothea; Bahai, Akash; Labuhn, Maurice; Doepke, Mandy; Ginkel, Corinne; Khera, Tanvi; Todt, Daniel; Ströh, Luisa J; Dold, Leona; Klein, Florian; et al. (BMJ Publisher. Group, 2020-12-15)
    Community-acquired pneumonia by primary or superinfections with Streptococcus pneumoniae can lead to acute respiratory distress requiring mechanical ventilation. The pore-forming toxin pneumolysin alters the alveolar-capillary barrier and causes extravasation of protein-rich fluid into the interstitial pulmonary tissue, which impairs gas exchange. Platelets usually prevent endothelial leakage in inflamed pulmonary tissue by sealing inflammation-induced endothelial gaps. We not only confirm that S pneumoniae induces CD62P expression in platelets, but we also show that, in the presence of pneumolysin, CD62P expression is not associated with platelet activation. Pneumolysin induces pores in the platelet membrane, which allow anti-CD62P antibodies to stain the intracellular CD62P without platelet activation. Pneumolysin treatment also results in calcium efflux, increase in light transmission by platelet lysis (not aggregation), loss of platelet thrombus formation in the flow chamber, and loss of pore-sealing capacity of platelets in the Boyden chamber. Specific anti-pneumolysin monoclonal and polyclonal antibodies inhibit these effects of pneumolysin on platelets as do polyvalent human immunoglobulins. In a post hoc analysis of the prospective randomized phase 2 CIGMA trial, we show that administration of a polyvalent immunoglobulin preparation was associated with a nominally higher platelet count and nominally improved survival in patients with severe S pneumoniae-related community-acquired pneumonia. Although, due to the low number of patients, no definitive conclusion can be made, our findings provide a rationale for investigation of pharmacologic immunoglobulin preparations to target pneumolysin by polyvalent immunoglobulin preparations in severe community-acquired pneumococcal pneumonia, to counteract the risk of these patients becoming ventilation dependent. This trial was registered at www.clinicaltrials.gov as #NCT01420744.
  • Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths.

    Moreira-Soto, Andres; Arroyo-Murillo, Francisco; Sander, Anna-Lena; Rasche, Andrea; Corman, Victor; Tegtmeyer, Birthe; Steinmann, Eike; Corrales-Aguilar, Eugenia; Wieseke, Nicolas; Avey-Arroyo, Judy; et al. (Oxford University Press, 2020-04-25)
    The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
  • Liver-expressed Cd302 and Cr1l limit hepatitis C virus cross-species transmission to mice

    American Association for the Advancement of Science (AAAS), 2020-11-04
    Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
  • Eosinophilic pulmonary vasculitis as a manifestation of the hyperinflammatory phase of COVID-19.

    Luecke, Eva; Jeron, Andreas; Kroeger, Andrea; Bruder, Dunja; Stegemann-Koniszewski, Sabine; Jechorek, Doerthe; Borucki, Katrin; Reinhold, Dirk; Reinhold, Annegret; Foellner, Sebastian; et al. (Elsevier, 2020-10-26)
    No abstract available
  • The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection.

    Lindqvist, Richard; Rosendal, Ebba; Weber, Elvira; Asghar, Naveed; Schreier, Sarah; Lenman, Annasara; Johansson, Magnus; Dobler, Gerhard; Bestehorn, Malena; Kröger, Andrea; et al. (BMC, 2020-09-28)
    Background: Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method: Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results: We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions: Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
  • OCIAD1 is a host mitochondrial substrate of the hepatitis C virus NS3-4A protease

    Tran, Huong T. L.; et al.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-07-01)
    The hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) protease is a key component of the viral replication complex and the target of protease inhibitors used in current clinical practice. By cleaving and thereby inactivating selected host factors it also plays a role in the persistence and pathogenesis of hepatitis C. Here, we describe ovarian cancer immunoreactive antigen domain containing protein 1 (OCIAD1) as a novel cellular substrate of the HCV NS3-4A protease. OCIAD1 was identified by quantitative proteomics involving stable isotopic labeling using amino acids in cell culture coupled with mass spectrometry. It is a poorly characterized membrane protein believed to be involved in cancer development. OCIAD1 is cleaved by the NS3-4A protease at Cys 38, close to a predicted transmembrane segment. Cleavage was observed in heterologous expression systems, the replicon and cell culture-derived HCV systems, as well as in liver biopsies from patients with chronic hepatitis C. NS3-4A proteases from diverse hepacivirus species efficiently cleaved OCIAD1. The subcellular localization of OCIAD1 on mitochondria was not altered by NS3-4A-mediated cleavage. Interestingly, OCIAD2, a homolog of OCIAD1 with a cysteine residue in a similar position and identical subcellular localization, was not cleaved by NS3-4A. Domain swapping experiments revealed that the sequence surrounding the cleavage site as well as the predicted transmembrane segment contribute to substrate selectivity. Overexpression as well as knock down and rescue experiments did not affect the HCV life cycle in vitro, raising the possibility that OCIAD1 may be involved in the pathogenesis of hepatitis C in vivo.
  • Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs.

    Cornelius, Angela D A; Hosseini, Shirin; Schreier, Sarah; Fritzsch, David; Weichert, Loreen; Michaelsen-Preusse, Kristin; Fendt, Markus; Kröger, Andrea; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (BioMed Central, 2020-09-20)
    To compare the effect of low and high viral replication in the brain, wildtype and Irf-7-/- mice were infected with Langat virus (LGTV), which belongs to the TBEV-serogroup. The viral burden was analyzed in the olfactory bulb and the hippocampus. Open field, elevated plus maze, and Morris water maze experiments were performed to determine the impact on anxiety-like behavior, learning, and memory formation. Spine density of hippocampal neurons and activation of microglia and astrocytes were analyzed.
  • Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells.

    Persson, B David; Lenman, Annasara; Frängsmyr, Lars; Schmid, Markus; Ahlm, Clas; Plückthun, Andreas; Jenssen, Håvard; Arnberg, Niklas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2020-07-01)
    Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses-and other viruses that engage cell adhesion molecules-enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin-a common innate immune component secreted to respiratory mucosa-for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel.IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell-apical or lateral/basolateral-is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.
  • Methylene Blue Treatment of Grafts During Cold Ischemia Time Reduces the Risk of Hepatitis C Virus Transmission.

    Helfritz, Fabian A; Bojkova, Denisa; Wanders, Verena; Kuklinski, Nina; Westhaus, Sandra; von Horn, Charlotte; Rauen, Ursula; Gallinat, Anja; Baba, Hideo A; Skyschally, Andreas; et al. (Oxford Academic, 2018-12-01)
    Background: Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods: Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results: Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions: This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.
  • Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro.

    Armando, Federico; Gambini, Matteo; Corradi, Attilio; Becker, Kathrin; Marek, Katarzyna; Pfankuche, Vanessa Maria; Mergani, Ahmed Elmonastir; Brogden, Graham; de Buhr, Nicole; Von Köckritz-Blickwede, Maren; et al. (Blackwell Publishing, 2020-07-06)
    Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV-infected cells exhibited an increased expression of epithelial markers such as E-cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
  • The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly.

    Vieyres, Gabrielle; Reichert, Isabelle; Carpentier, Arnaud; Vondran, Florian W R; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-06-15)
    Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/β hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.

View more