• ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production.

      Vieyres, Gabrielle; Welsch, Kathrin; Gerold, Gisa; Gentzsch, Juliane; Kahl, Sina; Vondran, Florian W R; Kaderali, Lars; Pietschmann, Thomas; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany. (2016-04)
      Hepatitis C virus (HCV) particles closely mimic human very-low-density lipoproteins (VLDL) to evade humoral immunity and to facilitate cell entry. However, the principles that govern HCV association with VLDL components are poorly defined. Using an siRNA screen, we identified ABHD5 (α/β hydrolase domain containing protein 5, also known as CGI-58) as a new host factor promoting both virus assembly and release. ABHD5 associated with lipid droplets and triggered their hydrolysis. Importantly, ABHD5 Chanarin-Dorfman syndrome mutants responsible for a rare lipid storage disorder in humans were mislocalised, and unable to consume lipid droplets or support HCV production. Additional ABHD5 mutagenesis revealed a novel tribasic motif that does not influence subcellular localization but determines both ABHD5 lipolytic and proviral properties. These results indicate that HCV taps into the lipid droplet triglyceride reservoir usurping ABHD5 lipase cofactor function. They also suggest that the resulting lipid flux, normally devoted to VLDL synthesis, also participates in the assembly and release of the HCV lipo-viro-particle. Altogether, our study provides the first association between the Chanarin-Dorfman syndrome protein and an infectious disease and sheds light on the hepatic manifestations of this rare genetic disorder as well as on HCV morphogenesis.
    • Active equine parvovirus-hepatitis infection is most frequently detected in Austrian horses of advanced age.

      Badenhorst, Marcha; de Heus, Phebe; Auer, Angelika; Tegtmeyer, Birthe; Stang, Alexander; Dimmel, Katharina; Tichy, Alexander; Kubacki, Jakub; Bachofen, Claudia; Steinmann, Eike; et al. (Wiley, 2021-03-11)
      ckground: Equine parvovirus-hepatitis (EqPV-H) research is in its infancy. Information regarding prevalence, geographical distribution, genetic diversity, pathogenesis and risk factors enhances understanding of this potentially fatal infection. Objectives: Determining the prevalence of EqPV-H in Austrian equids. Investigating factors increasing probability of infection, liver-associated biochemistry parameters, concurrent equine hepacivirus (EqHV) infection and phylogenetic analysis of Austrian EqPV-H variants. Study design: Cross-sectional study. Methods: Sera from 259 horses and 13 donkeys in Austria were analysed for anti-EqPV-H VP1-specific antibodies by luciferase immunoprecipitation system (LIPS) and EqPV-H DNA by nested polymerase chain reaction (PCR). Associations between infection status, sex and age were described. Glutamate dehydrogenase (GLDH), gamma-glutamyl transferase (GGT), bile acids and albumin concentrations were compared between horses with active infection and PCR-negative horses. PCR targeting partial EqPV-H NS1 was performed and phylogenetic analysis of Austrian EqPV-H variants was conducted. Complete coding sequences (CDS) of four Austrian variants were determined by next-generation sequencing (NGS) and compared with published sequences. Results: Horses' EqPV-H seroprevalence was 30.1% and DNA prevalence was 8.9%. One horse was co-infected with EqHV. Significantly, higher probability of active EqPV-H infection was identified in 16- to 31-year-old horses, compared with 1- to 8-year-old horses (P = 0.002; OR = 8.19; 95% CI = 1.79 to 37.50) and 9- to 15-year-old horses (P = 0.03; OR = 2.96; 95% CI = 1.08 to 8.17). Liver-associated plasma parameters were not significantly different between horses with active infection and controls. Austrian EqPV-H variants revealed high similarity to sequences worldwide. No evidence of EqPV-H was detected in donkeys. Main limitations: Equids' inclusion depended upon owner consent. There was only one sampling point per animal and the sample of donkeys was small. Conclusions: EqPV-H antibodies and DNA are frequently detected in Austrian horses, without associated hepatitis in horses with active infection. The risk of active EqPV-H infection increases with increasing age. Phylogenetic evidence supports close relation of EqPV-H variants globally, including Austrian variants.
    • Acute and chronic infections with nonprimate hepacivirus in young horses.

      Gather, Theresa; Walter, Stephanie; Pfaender, Stephanie; Todt, Daniel; Feige, Karsten; Steinmann, Eike; Cavalleri, Jessika M V; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2016-09-22)
      The recently discovered nonprimate hepacivirus (NPHV) naturally infects horses and is the closest known homolog of hepatitis C virus to date. Within a follow-up study acute field infections were monitored in four young Thoroughbred horses until the ages of 12-13 months. Serum samples were analyzed for the presence of NPHV RNA and anti-NPHV NS3 antibodies and liver specific parameters were evaluated. The four young horses were not able to clear infection, but remained chronically infected for the entire monitored time period despite the presence of NPHV specific antibodies.
    • Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors.

      Bitzegeio, Julia; Bankwitz, Dorothea; Hueging, Kathrin; Haid, Sibylle; Brohm, Christiane; Zeisel, Mirjam B; Herrmann, Eva; Iken, Marcus; Ott, Michael; Baumert, Thomas F; et al. (2010)
      Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.
    • Adaptation of Stenotrophomonas maltophilia in cystic fibrosis: molecular diversity, mutation frequency and antibiotic resistance.

      Vidigal, P G; Dittmer, S; Steinmann, E; Buer, J; Rath, P-M; Steinmann, J (2014-07)
      Due to the continuous exposure to a challenging environment and repeated antibiotic treatment courses, bacterial populations in cystic fibrosis (CF) patients experience selective pressure causing the emergence of mutator phenotypes. In this study we investigated the genotypic diversity, mutation frequency and antibiotic resistance of S. maltophilia isolates chronically colonizing CF patients. S. maltophilia was isolated from a total of 90 sputum samples, collected sequentially from 19 CF patients admitted between January 2008 and March 2012 at the University Hospital Essen, Germany. DNA fingerprinting by repetitive-sequence-based PCR revealed that 68.4% (n=13) of CF patients harbored different S. maltophilia genotypes during the 4-year study course. Out of 90 S. maltophilia isolates obtained from chronically colonized CF patients, 17.8% (n=16) were hypomutators, 27.7% (n=25), normomutators, 23.3% (n=21), weak hypermutators and 31.2% (n=28) strong hypermutators. We also found that mutation rates of the most clonally related genotypes varied over time with the tendency to become less mutable. Mutator isolates were found to have no significant increase in resistance against eight different antibiotics versus nonmutators. Sequencing of the mismatch repair genes mutL, mutS and uvrD revealed alterations that resulted in amino acid changes in their corresponding proteins. Here, we could demonstrate that several different S. maltophilia genotypes are present in CF patients and as a sign of adaption their mutation status switches over time to a less mutator phenotype without increasing resistance. These results suggest that S. maltophilia attempts to sustain its biological fitness as mechanism for long-term persistence in the CF lung.
    • An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission.

      Tarr, Alexander W; Lafaye, Pierre; Meredith, Luke; Damier-Piolle, Laurence; Urbanowicz, Richard A; Meola, Annalisa; Jestin, Jean-Luc; Brown, Richard J P; McKeating, Jane A; Rey, Felix A; et al. (2013-09)
      Severe liver disease caused by chronic hepatitis C virus is the major indication for liver transplantation. Despite recent advances in antiviral therapy, drug toxicity and unwanted side effects render effective treatment in liver-transplanted patients a challenging task. Virus-specific therapeutic antibodies are generally safe and well-tolerated, but their potential in preventing and treating hepatitis C virus (HCV) infection has not yet been realized due to a variety of issues, not least high production costs and virus variability. Heavy-chain antibodies or nanobodies, produced by camelids, represent an exciting antiviral approach; they can target novel highly conserved epitopes that are inaccessible to normal antibodies, and they are also easy to manipulate and produce. We isolated four distinct nanobodies from a phage-display library generated from an alpaca immunized with HCV E2 glycoprotein. One of them, nanobody D03, recognized a novel epitope overlapping with the epitopes of several broadly neutralizing human monoclonal antibodies. Its crystal structure revealed a long complementarity determining region (CD3) folding over part of the framework that, in conventional antibodies, forms the interface between heavy and light chain. D03 neutralized a panel of retroviral particles pseudotyped with HCV glycoproteins from six genotypes and authentic cell culture-derived particles by interfering with the E2-CD81 interaction. In contrast to some of the most broadly neutralizing human anti-E2 monoclonal antibodies, D03 efficiently inhibited HCV cell-to-cell transmission. Conclusion: This is the first description of a potent and broadly neutralizing HCV-specific nanobody representing a significant advance that will lead to future development of novel entry inhibitors for the treatment and prevention of HCV infection and help our understanding of HCV cell-to-cell transmission.
    • Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.

      Steinmann, J; Buer, J; Pietschmann, T; Steinmann, E; Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. joerg.steinmann@uk-essen.de (2013-03)
      The consumption of green tea (Camellia sinensis) has been shown to have many physiological and pharmacological health benefits. In the past two decades several studies have reported that epigallocatechin-3-gallate (EGCG), the main constituent of green tea, has anti-infective properties. Antiviral activities of EGCG with different modes of action have been demonstrated on diverse families of viruses, such as Retroviridae, Orthomyxoviridae and Flaviviridae and include important human pathogens like human immunodeficiency virus, influenza A virus and the hepatitis C virus. Furthermore, the molecule interferes with the replication cycle of DNA viruses like hepatitis B virus, herpes simplex virus and adenovirus. Most of these studies demonstrated antiviral properties within physiological concentrations of EGCG in vitro. In contrast, the minimum inhibitory concentrations against bacteria were 10-100-fold higher. Nevertheless, the antibacterial effects of EGCG alone and in combination with different antibiotics have been intensively analysed against a number of bacteria including multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus or Stenotrophomonas maltophilia. Furthermore, the catechin EGCG has antifungal activity against human-pathogenic yeasts like Candida albicans. Although the mechanistic effects of EGCG are not fully understood, there are results indicating that EGCG binds to lipid membranes and affects the folic acid metabolism of bacteria and fungi by inhibiting the cytoplasmic enzyme dihydrofolate reductase. This review summarizes the current knowledge and future perspectives on the antibacterial, antifungal and antiviral effects of the green tea constituent EGCG.
    • Anti-infective Properties of the Golden Spice Curcumin.

      Praditya, Dimas; Kirchhoff, Lisa; Brüning, Janina; Rachmawati, Heni; Steinmann, Joerg; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2019-01-01)
      The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin's antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
    • Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination.

      Adamek, Mikolaj; Davies, Jonathan; Beck, Alexander; Jordan, Lisa; Becker, Anna M; Mojzesz, Miriam; Rakus, Krzysztof; Rumiac, Typhaine; Collet, Bertrand; Brogden, Graham; et al. (Frontiers, 2021-02-24)
      Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
    • The Antiviral Activity of the Cellular Glycoprotein LGALS3BP/90K Is Species Specific.

      Lodermeyer, Veronika; Ssebyatika, George; Passos, Vânia; Ponnurangam, Aparna; Malassa, Angelina; Ewald, Ellen; Stürzel, Christina M; Kirchhoff, Frank; Rotger, Margalida; Falk, Christine S; et al. (American Society for Microbiology (ASM), 2018-07-15)
      Cellular antiviral proteins interfere with distinct steps of replication cycles of viruses. The galectin 3 binding protein (LGALS3BP, also known as 90K) was previously shown to lower the infectivity of nascent human immunodeficiency virus type 1 (HIV-1) virions when expressed in virus-producing cells. This antiviral effect was accompanied by impaired gp160Env processing and reduced viral incorporation of mature Env glycoproteins. Here, we examined the ability of 90K orthologs from primate species to reduce the particle infectivity of distinct lentiviruses. We show that 90K's ability to diminish the infectivity of lentiviral particles is conserved within primate species, with the notable exception of 90K from rhesus macaque. Comparison of active and inactive 90K orthologs and variants uncovered the fact that inhibition of processing of the HIV-1 Env precursor and reduction of cell surface expression of HIV-1 Env gp120 are required, but not sufficient, for 90K-mediated antiviral activity. Rather, 90K-mediated reduction of virion-associated gp120 coincided with antiviral activity, suggesting that 90K impairs the incorporation of HIV-1 Env into budding virions. We show that a single "humanizing" amino acid exchange in the BTB (broad-complex, tramtrack, and bric-à-brac)/POZ (poxvirus and zinc finger) domain is sufficient to fully rescue the antiviral activity of a shortened version of rhesus macaque 90K, but not that of the full-length protein. Comparison of the X-ray structures of the BTB/POZ domains of 90K from rhesus macaques and humans point toward a slightly larger hydrophobic patch at the surface of the rhesus macaque BTB domain that may modulate a direct interaction with either a second 90K domain or a different protein.IMPORTANCE The cellular 90K protein has been shown to diminish the infectivity of nascent HIV-1 particles. When produced in 90K-expressing cells, particles bear smaller amounts of the HIV-1 Env glycoprotein, which is essential for attaching to and entering new target cells in the subsequent infection round. However, whether the antiviral function of 90K is conserved across primates is unknown. Here, we found that 90K orthologs from most primate species, but, surprisingly, not from rhesus macaques, inhibit HIV-1. The introduction of a single amino acid exchange into a short version of the rhesus macaque 90K protein, consisting of the two intermediate domains of 90K, resulted in full restoration of antiviral activity. Structural elucidation of the respective domain suggests that the absence of antiviral activity in the rhesus macaque factor may be linked to a subtle change in protein-protein interaction.
    • Antiviral Meroterpenoid Rhodatin and Sesquiterpenoids Rhodocoranes A-E from the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Chemical Society, 2019-05-03)
      Rhodatin (1), a meroterpenoid featuring a unique pentacyclic scaffold with both spiro and spiroketal centers, and five unusual acorane-type sesquiterpenoids, named rhodocoranes A-E (2-6, respectively), are the first natural products isolated from the basidiomycete Rhodotus palmatus. Their structures were elucidated by two-dimensional NMR experiments and HRESIMS, while the absolute configuration of the substance family was determined by Mosher's method utilizing 2. Rhodatin strongly inhibited hepatitis C virus, whereas 4 displayed cytotoxicity and selective antifungal activity.
    • Apolipoprotein E polymorphisms and their protective effect on hepatitis E virus replication.

      Weller, Romy; Todt, Daniel; Engelmann, Michael; Friesland, Martina; Wedemeyer, Heiner; Pietschmann, Thomas; Steinmann, Eike; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2016-12)
    • Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure.

      Pfaender, Stephanie; Walter, Stephanie; Todt, Daniel; Behrendt, Patrick; Doerrbecker, Juliane; Wölk, Benno; Engelmann, Michael; Gravemann, Ute; Seltsam, Axel; Steinmann, Joerg; et al. (2015-09)
      The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.
    • The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly.

      Vieyres, Gabrielle; Reichert, Isabelle; Carpentier, Arnaud; Vondran, Florian W R; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-06-15)
      Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/β hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.
    • Axl can serve as entry factor for Lassa virus depending on the functional glycosylation of dystroglycan.

      Fedeli, Chiara; Torriani, Giulia; Galan-Navarro, Clara; Moraz, Marie-Laurence; Moreno, Hector; Gerold, Gisa; Kunz, Stefan; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-13)
      Fatal infection with the highly pathogenic Lassa virus (LASV) is characterized by extensive viral dissemination, indicating broad tissue tropism. The major cellular receptor for LASV is the highly conserved extracellular matrix receptor dystroglycan (DG). Binding of LASV depends on DG's tissue-specific post-translational modification with the unusual O-linked polysaccharide matriglycan. Interestingly, functional glycosylation of DG does not always correlate with viral tropism observed in vivo The broadly expressed phosphatidylserine (PS) receptors Axl and Tyro3 were recently identified as alternative LASV receptor candidates. However, their role in LASV entry is not entirely understood. Here we examined LASV receptor candidates in primary human cells and found co-expression of Axl with differentially glycosylated DG. To study LASV receptor use in the context of productive arenavirus infection, we employed recombinant lymphocytic choriomeningitis virus expressing LASV glycoprotein (rLCMV-LASVGP) as validated BSL2 model. We confirm and extend previous work, showing that Axl can contribute to LASV entry in absence of functional DG using "apoptotic mimicry", similar to other enveloped virus. We further show that Axl-dependent LASV entry requires receptor activation and involves a pathway resembling macropinocytosis. Axl-mediated LASV entry is facilitated by heparan sulfate and critically depends on the late endosomal protein LAMP-1 as intracellular entry factor. In endothelial cells expressing low levels of functional DG, both receptors are engaged by the virus and can contribute to productive entry. In sum, we characterize the role of Axl in LASV entry and provide a rationale to target Axl in anti-viral therapy.IMPORTANCEThe highly pathogenic arenavirus Lassa (LASV) represents a serious public health problem in Africa. Although the principal LASV receptor dystroglycan (DG) is ubiquitously expressed, virus binding critically depends on DG's post-translational modification, which does not always correlate with tissue tropism. The broadly expressed phosphatidylserine receptor Axl was recently identified as alternative LASV receptor candidate, but its role in LASV entry is unclear. Here we investigated the exact role of Axl in LASV entry as a function of DG's post-translational modification. We found that in absence of functional DG, Axl can mediate LASV entry via "apoptotic mimicry". Productive entry requires virus-induced receptor activation, involves macropinocytosis, and critically depends on LAMP-1. In endothelial cells that express low levels of glycosylated DG, both receptors can promote LASV entry. In sum, our study defines the roles of Axl in LASV entry and provides a rationale to target Axl in anti-viral therapy.
    • Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication.

      Chhatwal, Patrick; Bankwitz, Dorothea; Gentzsch, Juliane; Frentzen, Anne; Schult, Philipp; Lohmann, Volker; Pietschmann, Thomas; Department of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany. (2012)
      Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication.
    • Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents.

      Kirchhoff, Lisa; Olsowski, Maike; Zilmans, Katrin; Dittmer, Silke; Haase, Gerhard; Sedlacek, Ludwig; Steinmann, Eike; Buer, Jan; Rath, Peter-Michael; Steinmann, Joerg; et al. (2017-02-17)
      Various fungi have the ability to colonize surfaces and to form biofilms. Fungal biofilm-associated infections are frequently refractory to targeted treatment because of resistance to antifungal drugs. One fungus that frequently colonises the respiratory tract of cystic fibrosis (CF) patients is the opportunistic black yeast-like fungus Exophiala dermatitidis. We investigated the biofilm-forming ability of E. dermatitidis and its susceptibility to various antiinfective agents and natural compounds. We tested 58 E. dermatitidis isolates with a biofilm assay based on crystal violet staining. In addition, we used three isolates to examine the antibiofilm activity of voriconazole, micafungin, colistin, farnesol, and the plant derivatives 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (PGG) and epigallocatechin-3-gallate (EGCG) with an XTT reduction assay. We analysed the effect of the agents on cell to surface adhesion, biofilm formation, and the mature biofilm. The biofilms were also investigated by confocal laser scan microscopy. We found that E. dermatitidis builds biofilm in a strain-specific manner. Invasive E. dermatitidis isolates form most biomass in biofilm. The antiinfective agents and the natural compounds exhibited poor antibiofilm activity. The greatest impact of the compounds was detected when they were added prior cell adhesion. These findings suggest that prevention may be more effective than treatment of biofilm-associated E. dermatitidis infections.
    • Bioinformatics of virus taxonomy: foundations and tools for developing sequence-based hierarchical classification.

      Gorbalenya, Alexander E; Lauber, Chris; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Elsevier, 2021-12-06)
      The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology. Copyrigh
    • Biotechnological Potential of Bacteria Isolated from the Sea Cucumber and from Lampung, Indonesia.

      Wibowo, Joko T; Kellermann, Matthias Y; Versluis, Dennis; Putra, Masteria Y; Murniasih, Tutik; Mohr, Kathrin I; Wink, Joachim; Engelmann, Michael; Praditya, Dimas F; Steinmann, Eike; et al. (MPDI, 2019-11-08)
      In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.
    • C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle

      Kinast, Volker; Plociennikowska, Agnieszka; Anggakusuma; Bracht, Thilo; Todt, Daniel; Brown, Richard J.P.; Boldanova, Tujana; Zhang, Yudi; Brüggemann, Yannick; Friesland, Martina; et al. (Elsevier, 2020-04-12)
      Background & Aims HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. Methods Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. Results Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. Conclusion C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication.